Skip to contents
-
add_index()
- Add follow-up time and arm indices to a dataset
-
alog_pcfb
- Studies of alogliptin for lowering blood glucose concentration in patients with type II diabetes
-
binplot()
- Plot relative effects from NMAs performed at multiple time-bins
-
copd
- Studies comparing Tiotropium, Aclidinium and Placebo for maintenance treatment of moderate to severe chronic obstructive pulmonary disease
-
cumrank()
- Plot cumulative ranking curves from MBNMA models
-
default.priors()
- Sets default priors for JAGS model code
-
devplot()
- Plot deviance contributions from an MBNMA model
-
diabetes
- Studies comparing treatments for type 2 diabetes
-
fitplot()
- Plot fitted values from MBNMA model
-
gen.parameters.to.save()
- Automatically generate parameters to save for a time-course MBNMA model
-
genmaxcols()
- Get large vector of distinct colours using Rcolorbrewer
-
genspline()
- Generates spline basis matrices for fitting to time-course function
-
get.closest.time()
- Create a dataset with a single time point from each study closest to specified time
-
get.earliest.time()
- Create a dataset with the earliest time point only
-
get.latest.time()
- Create a dataset with the latest time point only
-
get.model.vals()
- Get MBNMA model values
-
get.prior()
- Get current priors from JAGS model code
-
get.relative()
- Calculates relative effects/mean differences at a particular time-point
-
getjagsdata()
- Prepares data for JAGS
-
getnmadata()
- Prepares NMA data for JAGS
-
goutSUA_CFB
- Studies of treatments for reducing serum uric acid in patients with gout
-
goutSUA_CFBcomb
- Studies of combined treatments for reducing serum uric acid in patients with gout
-
hyalarthritis
- Studies comparing hyaluronan (HA)–based viscosupplements for osteoarthritis
-
inconsistency.loops()
- Identify comparisons in loops that fulfil criteria for node-splitting
-
mb.comparisons()
- Identify unique comparisons within a network (identical to MBNMAdose)
-
mb.make.contrast()
- Convert arm-based MBNMA data to contrast data
-
plot(<mb.network>)
mb.network()
- Create an
mb.network
object
-
plot(<nodesplit>)
mb.nodesplit()
- Perform node-splitting on a MBNMA time-course network
-
mb.nodesplit.comparisons()
- Identify comparisons in time-course MBNMA datasets that fulfil criteria for node-splitting
-
mb.run()
- Run MBNMA time-course models
-
mb.update()
- Update MBNMA to obtain deviance contributions or fitted values
-
mb.validate.data()
- Validates that a dataset fulfils requirements for MBNMA
-
mb.write()
- Write MBNMA time-course models JAGS code
-
nma.run()
- Run an NMA model
-
obesityBW_CFB
- Studies of treatments for reducing body weight in patients with obesity
-
osteopain
- Studies of pain relief medications for osteoarthritis
-
pDcalc()
- Calculate plugin pD from a JAGS model with univariate likelihood for studies with repeated measurements
-
plot(<mb.predict>)
- Plots predicted responses from a time-course MBNMA model
-
plot(<mb.rank>)
- Plot histograms of rankings from MBNMA models
-
plot(<mbnma>)
- Forest plot for results from time-course MBNMA models
-
predict(<mbnma>)
- Predict effects over time in a given population based on MBNMA time-course models
-
print(<mb.network>)
- Print mb.network information to the console
-
print(<mb.predict>)
- Print summary information from an mb.predict object
-
print(<mb.rank>)
- Prints a summary of rankings for each parameter
-
print(<nodesplit>)
- Prints basic results from a node-split to the console
-
print(<relative.array>)
- Print posterior medians (95% credible intervals) for table of relative effects/mean differences between treatments/classes
-
radian.rescale()
- Calculate position of label with respect to vertex location within a circle
-
rank()
- Set rank as a method
-
rank(<mb.predict>)
- Rank predictions at a specific time point
-
rank(<mbnma>)
- Rank parameters from a time-course MBNMA
-
rankauc()
- Calculates ranking probabilities for AUC from a time-course MBNMA
-
ref.comparisons()
- Identify unique comparisons relative to study reference treatment within a network
-
ref.synth()
- Synthesise single arm studies with repeated observations of the same treatment over time
-
ref.validate()
- Checks the validity of ref.resp if given as data frame
-
remove.loops()
- Removes any loops from MBNMA model JAGS code that do not contain any expressions
-
replace.prior()
- Replace original priors in an MBNMA model with new priors
-
summary(<mb.network>)
- Print summary mb.network information to the console
-
summary(<mb.predict>)
- Prints summary of mb.predict object
-
summary(<mbnma>)
- Print summary MBNMA results to the console
-
summary(<nodesplit>)
- Takes node-split results and produces summary data frame
-
temax()
- Emax time-course function
-
tfpoly()
- Fractional polynomial time-course function
-
timeplot()
- Plot raw responses over time by treatment or class
-
titp()
- Integrated Two-Component Prediction (ITP) function
-
tloglin()
- Log-linear (exponential) time-course function
-
tpoly()
- Polynomial time-course function
-
tspline()
- Spline time-course functions
-
tuser()
- User-defined time-course function
-
write.beta()
- Adds sections of JAGS code for an MBNMA model that correspond to beta parameters
-
write.check()
- Checks validity of arguments for mb.write
-
write.cor()
- Adds correlation between time-course relative effects
-
write.likelihood()
- Adds sections of JAGS code for an MBNMA model that correspond to the likelihood
-
write.model()
- Write the basic JAGS model code for MBNMA to which other lines of model code can be added
-
write.ref.synth()
- Write MBNMA time-course models JAGS code for synthesis of studies investigating reference treatment
-
write.timecourse()
- Adds sections of JAGS code for an MBNMA model that correspond to alpha parameters