Prints summary of mb.predict object
summary.mb.predict.Rd
Prints a summary table of the mean of MCMC iterations at each time point for each treatment
Usage
# S3 method for class 'mb.predict'
summary(object, ...)
Value
A matrix containing times at which responses have been predicted (time
)
and an additional column for each treatment for which responses have been predicted.
Each row represents mean MCMC predicted responses for each treatment at a particular
time.
Examples
# \donttest{
# Define network
network <- mb.network(obesityBW_CFB, reference="plac")
#> Studies reporting change from baseline automatically identified from the data
# Run an MBNMA with a quadratic time-course function
quad <- mb.run(network,
fun=tpoly(degree=2, pool.1="rel", method.1="common",
pool.2="rel", method.2="common"),
intercept=TRUE)
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 648
#> Unobserved stochastic nodes: 155
#> Total graph size: 11509
#>
#> Initializing model
#>
# Predict responses
pred <- predict(quad, times=c(0:50), treats=c(1:5),
ref.resp = network$data.ab[network$data.ab$treatment==1,],
E0=10)
#> Data frame must contain only data from reference treatment
#> Studies reporting change from baseline automatically identified from ref.resp
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 264
#> Unobserved stochastic nodes: 2
#> Total graph size: 4193
#>
#> Initializing model
#>
# Generate summary of predictions
summary(pred)
#> time plac amfe_75MG dexf_10MG dexf_30MG dexf_60MG
#> [1,] 0 10.000000 10.00000000 10.000000 10.000000 10.000000
#> [2,] 1 9.910658 9.52113531 9.860406 9.496127 9.316951
#> [3,] 2 9.822262 9.05410328 9.732131 9.027310 8.679582
#> [4,] 3 9.734813 8.59890392 9.615174 8.593549 8.087893
#> [5,] 4 9.648310 8.15553723 9.509536 8.194844 7.541884
#> [6,] 5 9.562754 7.72400320 9.415217 7.831196 7.041555
#> [7,] 6 9.478144 7.30430185 9.332216 7.502604 6.586906
#> [8,] 7 9.394480 6.89643316 9.260533 7.209068 6.177936
#> [9,] 8 9.311763 6.50039713 9.200170 6.950588 5.814646
#> [10,] 9 9.229992 6.11619378 9.151124 6.727165 5.497037
#> [11,] 10 9.149168 5.74382309 9.113398 6.538798 5.225107
#> [12,] 11 9.069290 5.38328506 9.086990 6.385487 4.998857
#> [13,] 12 8.990358 5.03457971 9.071900 6.267232 4.818287
#> [14,] 13 8.912373 4.69770702 9.068129 6.184033 4.683396
#> [15,] 14 8.835334 4.37266700 9.075677 6.135891 4.594186
#> [16,] 15 8.759242 4.05945964 9.094543 6.122805 4.550655
#> [17,] 16 8.684096 3.75808496 9.124728 6.144775 4.552805
#> [18,] 17 8.609896 3.46854294 9.166232 6.201802 4.600634
#> [19,] 18 8.536643 3.19083359 9.219054 6.293884 4.694143
#> [20,] 19 8.464337 2.92495690 9.283194 6.421023 4.833332
#> [21,] 20 8.392976 2.67091288 9.358653 6.583218 5.018201
#> [22,] 21 8.322563 2.42870153 9.445431 6.780469 5.248750
#> [23,] 22 8.253095 2.19832285 9.543527 7.012777 5.524978
#> [24,] 23 8.184574 1.97977683 9.652942 7.280141 5.846887
#> [25,] 24 8.116999 1.77306348 9.773676 7.582561 6.214475
#> [26,] 25 8.050371 1.57818280 9.905728 7.920037 6.627744
#> [27,] 26 7.984689 1.39513478 10.049099 8.292569 7.086692
#> [28,] 27 7.919954 1.22391943 10.203788 8.700158 7.591320
#> [29,] 28 7.856165 1.06453675 10.369796 9.142803 8.141628
#> [30,] 29 7.793323 0.91698673 10.547122 9.620504 8.737615
#> [31,] 30 7.731426 0.78126939 10.735767 10.133261 9.379283
#> [32,] 31 7.670477 0.65738471 10.935730 10.681074 10.066630
#> [33,] 32 7.610473 0.54533269 11.147013 11.263944 10.799658
#> [34,] 33 7.551416 0.44511335 11.369613 11.881870 11.578365
#> [35,] 34 7.493306 0.35672667 11.603533 12.534852 12.402752
#> [36,] 35 7.436142 0.28017266 11.848770 13.222891 13.272819
#> [37,] 36 7.379924 0.21545131 12.105327 13.945986 14.188566
#> [38,] 37 7.324653 0.16256263 12.373202 14.704136 15.149993
#> [39,] 38 7.270328 0.12150662 12.652395 15.497344 16.157100
#> [40,] 39 7.216950 0.09228328 12.942908 16.325607 17.209886
#> [41,] 40 7.164518 0.07489260 13.244738 17.188926 18.308353
#> [42,] 41 7.113032 0.06933459 13.557888 18.087302 19.452499
#> [43,] 42 7.062493 0.07560925 13.882356 19.020734 20.642325
#> [44,] 43 7.012900 0.09371657 14.218142 19.989222 21.877831
#> [45,] 44 6.964254 0.12365657 14.565247 20.992767 23.159017
#> [46,] 45 6.916554 0.16542923 14.923671 22.031368 24.485883
#> [47,] 46 6.869800 0.21903455 15.293413 23.105025 25.858428
#> [48,] 47 6.823993 0.28447254 15.674474 24.213738 27.276654
#> [49,] 48 6.779132 0.36174320 16.066853 25.357507 28.740559
#> [50,] 49 6.735218 0.45084653 16.470551 26.536333 30.250145
#> [51,] 50 6.692250 0.55178253 16.885568 27.750214 31.805410
# }