Run MBNMA time-course models
mb.run.Rd
Fits a Bayesian time-course model for model-based network meta-analysis (MBNMA) that can account for repeated measures over time within studies by applying a desired time-course function. Follows the methods of Pedder et al. (2019) .
Usage
mb.run(
network,
fun = tpoly(degree = 1),
positive.scale = FALSE,
intercept = NULL,
link = "identity",
sdscale = FALSE,
parameters.to.save = NULL,
rho = 0,
covar = "varadj",
omega = NULL,
corparam = FALSE,
class.effect = list(),
UME = FALSE,
pd = "pv",
parallel = FALSE,
priors = NULL,
n.iter = 20000,
n.chains = 3,
n.burnin = floor(n.iter/2),
n.thin = max(1, floor((n.iter - n.burnin)/1000)),
model.file = NULL,
jagsdata = NULL,
...
)
Arguments
- network
An object of class
"mb.network"
.- fun
An object of class
"timefun"
generated (see Details) using any oftloglin()
,tpoly()
,titp()
,temax()
,tfpoly()
,tspline()
ortuser()
- positive.scale
A boolean object that indicates whether all continuous mean responses (y) are positive and therefore whether the baseline response should be given a prior that constrains it to be positive (e.g. for scales that cannot be <0).
- intercept
A boolean object that indicates whether an intercept (written as
alpha
in the model) is to be included. If left asNULL
(the default), an intercept will be included only for studies reporting absolute means, and will be excluded for studies reporting change from baseline (as indicated innetwork$cfb
).- link
Can take either
"identity"
(the default),"log"
(for modelling Ratios of Means (Friedrich et al. 2011) ) or"smd"
(for modelling Standardised Mean Differences - although this also corresponds to an identity link function).- sdscale
Logical object to indicate whether to write a model that specifies a reference SD for standardising when modelling using Standardised Mean Differences. Specifying
sdscale=TRUE
will therefore only modify the model if link function is set to SMD (link="smd"
).- parameters.to.save
A character vector containing names of parameters to monitor in JAGS
- rho
The correlation coefficient when modelling within-study correlation between time points. The default is a string representing a prior distribution in JAGS, indicating that it be estimated from the data (e.g.
rho="dunif(0,1)"
).rho
also be assigned a numeric value (e.g.rho=0.7
), which fixesrho
in the model to this value (e.g. for use in a deterministic sensitivity analysis). If set torho=0
(the default) then this implies modelling no correlation between time points.- covar
A character specifying the covariance structure to use for modelling within-study correlation between time-points. This can be done by specifying one of the following:
"varadj"
- a univariate likelihood with a variance adjustment to assume a constant correlation between subsequent time points (Jansen et al. 2015) . This is the default."CS"
- a multivariate normal likelihood with a compound symmetry structure"AR1"
- a multivariate normal likelihood with an autoregressive AR1 structure
- omega
DEPRECATED IN VERSION 0.2.3 ONWARDS (~uniform(-1,1) now used for correlation between parameters rather than a Wishart prior). A scale matrix for the inverse-Wishart prior for the covariance matrix used to model the correlation between time-course parameters (see Details for time-course functions).
omega
must be a symmetric positive definite matrix with dimensions equal to the number of time-course parameters modelled using relative effects (pool="rel"
). If left asNULL
(the default) a diagonal matrix with elements equal to 1 is used.- corparam
A boolean object that indicates whether correlation should be modeled between relative effect time-course parameters. Default is
FALSE
and this is automatically set toFALSE
if class effects are modeled. Setting it toTRUE
models correlation between time-course parameters. This can help identify parameters that are estimated poorly for some treatments by allowing sharing of information between parameters for different treatments in the network, but may also cause some shrinkage.- class.effect
A list of named strings that determines which time-course parameters to model with a class effect and what that effect should be (
"common"
or"random"
). For example:list(emax="common", et50="random")
.- UME
Can take either
TRUE
orFALSE
(for an unrelated mean effects model on all or no time-course parameters respectively) or can be a vector of parameter name strings to model as UME. For example:c("beta.1", "beta.2")
.- pd
Can take either:
pv
only pV will be reported (as automatically outputted by R2jags).plugin
calculates pD by the plug-in method (Spiegelhalter et al. 2002) . It is faster, but may output negative non-sensical values, due to skewed deviances that can arise with non-linear models.pd.kl
(the default) calculates pD by the Kullback–Leibler divergence (Plummer 2008) . This will require running the model for additional iterations but will always produce a sensical result.popt
calculates pD using an optimism adjustment which allows for calculation of the penalized expected deviance (Plummer 2008)
- parallel
A boolean value that indicates whether JAGS should be run in parallel (
TRUE
) or not (FALSE
). IfTRUE
then the number of cores to use is automatically calculated. Functions that involve updating the model (e.g.devplot()
,fitplot()
) cannot be used with models implemented in parallel.- priors
A named list of parameter values (without indices) and replacement prior distribution values given as strings using distributions as specified in JAGS syntax (see Plummer (2017) ).
- n.iter
number of total iterations per chain (including burn in; default: 20000)
- n.chains
number of Markov chains (default: 3)
- n.burnin
length of burn in, i.e. number of iterations to discard at the beginning. Default is
n.iter/2``, that is, discarding the first half of the simulations. If
n.burnin` is 0, jags() will run 100 iterations for adaption.- n.thin
thinning rate. Must be a positive integer. Set
n.thin > 1`` to save memory and computation time if
n.iteris large. Default is
max(1, floor(n.chains * (n.iter-n.burnin) / 1000))`` which will only thin if there are at least 2000 simulations.- model.file
The file path to a JAGS model (.jags file) that can be used to overwrite the JAGS model that is automatically written based on the specified options in
MBNMAtime
. Useful for adding further model flexibility.- jagsdata
A named list of the data objects to be used in the JAGS model. Only required if users are defining their own JAGS model using
model.file
. Format should match that of standard models fitted inMBNMAtime
(seembnma$model.arg$jagsdata
)- ...
Arguments to be sent to R2jags.
Value
An object of S3 class c("mbnma", "rjags")`` containing parameter results from the model. Can be summarized by
print()and can check traceplots using
R2jags::traceplot()or various functions from the package
mcmcplots`.#'
If there are errors in the JAGS model code then the object will be a list
consisting of two elements - an error message from JAGS that can help with
debugging and model.arg
, a list of arguments provided to mb.run()
which includes jagscode
, the JAGS code for the model that can help
users identify the source of the error.
Time-course parameters
Nodes that are automatically monitored (if present in the model) have the
same name as in the time-course function for named time-course parameters (e.g. emax
).
However, for named only as beta.1
, beta.2
, beta.3
or beta.4
parameters
may have an alternative interpretation.
Details of the interpretation and model specification of different parameters can be shown by using the
summary()
method on an "mbnma"
object generated by mb.run()
.
Parameters modelled using relative effects
If pooling is relative (e.g.
pool.1="rel"
) for a given parameter then the named parameter (e.g.emax
) or a numberedd
parameter (e.g.d.1
) corresponds to the pooled relative effect for a given treatment compared to the network reference treatment for this time-course parameter.sd.
followed by a named (e.g.emax
,beta.1
) is the between-study SD (heterogeneity) for relative effects, reported if pooling for a time-course parameter is relative (e.g.pool.1="rel"
) and the method for synthesis is random (e.g.method.1="random
).If class effects are modelled, parameters for classes are represented by the upper case name of the time-course parameter they correspond to. For example if
class.effect=list(emax="random")
, relative class effects will be represented byEMAX
. The SD of the class effect (e.g.sd.EMAX
,sd.BETA.1
) is the SD of treatments within a class for the time-course parameter they correspond to.
Parameters modelled using absolute effects
If pooling is absolute (e.g.
pool.1="abs"
) for a given parameter then the named parameter (e.g.emax
) or a numberedbeta
parameter (e.g.beta.1
) corresponds to the estimated absolute effect for this time-course parameter.For an absolute time-course parameter if the corresponding method is common (e.g.
method.1="common"
) the parameter corresponds to a single common parameter estimated across all studies and treatments. If the corresponding method is random (e.g.method.1="random"
) then parameter is a mean effect around which the study-level absolute effects vary with SD corresponding tosd.
followed by the named parameter (e.g.sd.emax
,sd.beta.1
) .
Other model parameters
rho
The correlation coefficient for correlation between time-points. Its interpretation will differ depending on the covariance structure specified incovar
totresdev
The residual deviance of the modeldeviance
The deviance of the model
Time-course function
Several general time-course functions with up to 4 time-course parameters are provided, but a user-defined time-course relationship can instead be used. Details can be found in the respective help files for each function.
Available time-course functions are:
Correlation between observations
When modelling correlation between observations using rho
, values for rho
must imply a
positive semidefinite covariance matrix.
Advanced options
model.file
and jagsdata
can be used to run an edited JAGS model and dataset. This allows
users considerably more modelling flexibility than is possible using the basic MBNMAtime
syntax,
though requires strong understanding of JAGS and the MBNMA modelling framework. Treatment-specific
priors, meta-regression and bias-adjustment are all possible in this way, and it allows users to
make use of the subsequent functions in MBNMAtime
(plotting, prediction, ranking) whilst fitting
these more complex models.
References
Friedrich JO, Adhikari NKJ, Beyene J (2011).
“Ratio of means for analyzing continuous outcomes in meta-analysis performed as well as mean difference methods.”
Journal of Clinical Epidemiology, 64(5), 556-564.
doi:10.1016/j.jclinepi.2010.09.016
.
Jansen JP, Vieira MC, Cope S (2015).
“Network meta-analysis of longitudinal data using fractional polynomials.”
Stat Med, 34(15), 2294-311.
ISSN 1097-0258 (Electronic) 0277-6715 (Linking), doi:10.1002/sim.6492
, https://pubmed.ncbi.nlm.nih.gov/25877808/.
Pedder H, Dias S, Bennetts M, Boucher M, Welton NJ (2019).
“Modelling time-course relationships with multiple treatments: Model-Based Network Meta-Analysis for continuous summary outcomes.”
Res Synth Methods, 10(2), 267-286.
Plummer M (2008).
“Penalized loss functions for Bayesian model comparison.”
Biostatistics, 9(3), 523-39.
ISSN 1468-4357 (Electronic) 1465-4644 (Linking), https://pubmed.ncbi.nlm.nih.gov/18209015/.
Plummer M (2017).
JAGS user manual.
https://people.stat.sc.edu/hansont/stat740/jags_user_manual.pdf.
Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002).
“Bayesian measures of model complexity and fit.”
J R Statistic Soc B, 64(4), 583-639.
Examples
# \donttest{
# Create mb.network object
network <- mb.network(osteopain)
#> Reference treatment is `Pl_0`
#> Studies reporting change from baseline automatically identified from the data
# Fit a linear time-course MBNMA with:
# random relative treatment effects on the slope
mb.run(network, fun=tpoly(degree=1, pool.1="rel", method.1="random"))
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 417
#> Unobserved stochastic nodes: 163
#> Total graph size: 7701
#>
#> Initializing model
#>
#> Inference for Bugs model at "/tmp/RtmpAXd0fj/file176e64ba2561", fit using jags,
#> 3 chains, each with 20000 iterations (first 10000 discarded), n.thin = 10
#> n.sims = 3000 iterations saved
#> mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat
#> d.1[1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
#> d.1[2] -0.063 0.044 -0.149 -0.093 -0.063 -0.034 0.021 1.001
#> d.1[3] -0.094 0.018 -0.129 -0.105 -0.094 -0.082 -0.061 1.001
#> d.1[4] -0.095 0.045 -0.185 -0.124 -0.094 -0.065 -0.006 1.001
#> d.1[5] -0.043 0.053 -0.150 -0.078 -0.044 -0.009 0.062 1.001
#> d.1[6] 0.003 0.070 -0.137 -0.042 0.003 0.051 0.138 1.001
#> d.1[7] -0.147 0.035 -0.216 -0.170 -0.147 -0.124 -0.077 1.003
#> d.1[8] -0.027 0.072 -0.169 -0.073 -0.028 0.022 0.111 1.001
#> d.1[9] -0.289 0.049 -0.388 -0.321 -0.289 -0.258 -0.192 1.002
#> d.1[10] -0.304 0.070 -0.441 -0.351 -0.304 -0.257 -0.165 1.001
#> d.1[11] -0.076 0.037 -0.147 -0.101 -0.077 -0.051 -0.003 1.001
#> d.1[12] -0.071 0.037 -0.146 -0.096 -0.071 -0.045 0.002 1.001
#> d.1[13] -0.085 0.045 -0.174 -0.115 -0.085 -0.054 0.004 1.002
#> d.1[14] -0.083 0.061 -0.199 -0.124 -0.082 -0.042 0.041 1.001
#> d.1[15] -0.128 0.025 -0.176 -0.144 -0.128 -0.112 -0.078 1.001
#> d.1[16] -0.133 0.039 -0.211 -0.159 -0.133 -0.107 -0.058 1.001
#> d.1[17] 0.115 0.064 -0.011 0.069 0.115 0.157 0.241 1.002
#> d.1[18] -0.127 0.048 -0.220 -0.158 -0.126 -0.096 -0.035 1.001
#> d.1[19] -0.122 0.079 -0.276 -0.176 -0.124 -0.069 0.032 1.002
#> d.1[20] -0.114 0.049 -0.212 -0.147 -0.112 -0.081 -0.022 1.001
#> d.1[21] -0.429 0.075 -0.580 -0.479 -0.428 -0.378 -0.285 1.001
#> d.1[22] -0.170 0.042 -0.252 -0.198 -0.170 -0.142 -0.089 1.001
#> d.1[23] -0.029 0.040 -0.107 -0.056 -0.029 -0.004 0.049 1.001
#> d.1[24] -0.040 0.040 -0.121 -0.067 -0.039 -0.015 0.039 1.001
#> d.1[25] -0.066 0.041 -0.148 -0.091 -0.065 -0.039 0.014 1.001
#> d.1[26] -0.083 0.062 -0.209 -0.124 -0.083 -0.041 0.036 1.001
#> d.1[27] -0.066 0.066 -0.195 -0.110 -0.067 -0.023 0.065 1.001
#> d.1[28] -0.093 0.065 -0.222 -0.135 -0.093 -0.048 0.030 1.001
#> d.1[29] -0.078 0.065 -0.206 -0.120 -0.079 -0.036 0.053 1.001
#> rho 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
#> sd.beta.1 0.072 0.009 0.056 0.066 0.072 0.078 0.093 1.001
#> totresdev 9299.479 16.771 9267.959 9287.866 9298.891 9310.876 9332.959 1.001
#> deviance 8419.440 16.771 8387.920 8407.827 8418.852 8430.837 8452.920 1.001
#> n.eff
#> d.1[1] 1
#> d.1[2] 3000
#> d.1[3] 2500
#> d.1[4] 3000
#> d.1[5] 3000
#> d.1[6] 3000
#> d.1[7] 1600
#> d.1[8] 3000
#> d.1[9] 1500
#> d.1[10] 3000
#> d.1[11] 3000
#> d.1[12] 3000
#> d.1[13] 1200
#> d.1[14] 2200
#> d.1[15] 3000
#> d.1[16] 3000
#> d.1[17] 1800
#> d.1[18] 3000
#> d.1[19] 1900
#> d.1[20] 3000
#> d.1[21] 3000
#> d.1[22] 2100
#> d.1[23] 3000
#> d.1[24] 3000
#> d.1[25] 3000
#> d.1[26] 3000
#> d.1[27] 3000
#> d.1[28] 3000
#> d.1[29] 2700
#> rho 1
#> sd.beta.1 3000
#> totresdev 3000
#> deviance 3000
#>
#> For each parameter, n.eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
#>
#> DIC info (using the rule, pD = var(deviance)/2)
#> pD = 140.7 and DIC = 8559.5
#> DIC is an estimate of expected predictive error (lower deviance is better).
# Fit an emax time-course MBNMA with:
# fixed relative treatment effects on emax
# a common parameter estimated independently of treatment
# a common Hill parameter estimated independently of treatment
# a prior for the Hill parameter (normal with mean 0 and precision 0.1)
# data reported as change from baseline
result <- mb.run(network, fun=temax(pool.emax="rel", method.emax="common",
pool.et50="abs", method.et50="common",
pool.hill="abs", method.hill="common"),
priors=list(hill="dunif(0.5, 2)"),
intercept=TRUE)
#> 'et50' parameters must take positive values.
#> Default half-normal prior restricts posterior to positive values.
#> 'hill' parameters must take positive values.
#> Default half-normal prior restricts posterior to positive values.
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 417
#> Unobserved stochastic nodes: 90
#> Total graph size: 7740
#>
#> Initializing model
#>
#### commented out to prevent errors from JAGS version in github actions build ####
# Fit a log-linear MBNMA with:
# random relative treatment effects on the rate
# an autoregressive AR1 covariance structure
# modelled as standardised mean differences
# copdnet <- mb.network(copd)
# result <- mb.run(copdnet, fun=tloglin(pool.rate="rel", method.rate="random"),
# covar="AR1", rho="dunif(0,1)", link="smd")
####### Examine MCMC diagnostics (using mcmcplots package) #######
# Traceplots
# mcmcplots::traplot(result)
# Plots for assessing convergence
# mcmcplots::mcmcplot(result, c("rate", "sd.rate", "rho"))
########## Output ###########
# Print R2jags output and summary
print(result)
#> Inference for Bugs model at "/tmp/RtmpAXd0fj/file176e83cd95c", fit using jags,
#> 3 chains, each with 20000 iterations (first 10000 discarded), n.thin = 10
#> n.sims = 3000 iterations saved
#> mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
#> emax[1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1
#> emax[2] -0.642 0.107 -0.850 -0.714 -0.641 -0.572 -0.435 1.001 3000
#> emax[3] -0.930 0.045 -1.018 -0.960 -0.930 -0.899 -0.841 1.001 3000
#> emax[4] -1.037 0.103 -1.242 -1.107 -1.037 -0.965 -0.841 1.001 3000
#> emax[5] -0.626 0.194 -1.018 -0.756 -0.626 -0.497 -0.249 1.001 2400
#> emax[6] -0.120 0.142 -0.404 -0.213 -0.118 -0.026 0.153 1.001 3000
#> emax[7] -1.228 0.073 -1.370 -1.279 -1.230 -1.177 -1.086 1.001 3000
#> emax[8] -0.117 0.144 -0.401 -0.213 -0.118 -0.019 0.162 1.001 2900
#> emax[9] -1.893 0.114 -2.118 -1.969 -1.892 -1.814 -1.671 1.003 850
#> emax[10] -1.898 0.158 -2.207 -2.004 -1.895 -1.789 -1.592 1.002 1600
#> emax[11] -0.876 0.062 -0.997 -0.918 -0.876 -0.836 -0.757 1.001 3000
#> emax[12] -0.858 0.064 -0.982 -0.901 -0.857 -0.814 -0.734 1.001 3000
#> emax[13] -1.061 0.077 -1.214 -1.111 -1.061 -1.009 -0.911 1.001 3000
#> emax[14] -0.986 0.124 -1.238 -1.067 -0.983 -0.905 -0.749 1.001 3000
#> emax[15] -1.316 0.066 -1.440 -1.362 -1.317 -1.270 -1.190 1.001 3000
#> emax[16] -1.220 0.077 -1.374 -1.273 -1.219 -1.167 -1.071 1.001 3000
#> emax[17] 0.362 0.139 0.090 0.265 0.360 0.458 0.632 1.001 3000
#> emax[18] -0.923 0.090 -1.097 -0.984 -0.923 -0.862 -0.753 1.001 3000
#> emax[19] -1.289 0.240 -1.755 -1.454 -1.287 -1.130 -0.824 1.001 3000
#> emax[20] -0.881 0.103 -1.084 -0.949 -0.882 -0.812 -0.678 1.001 2300
#> emax[21] -2.634 0.208 -3.054 -2.773 -2.632 -2.496 -2.225 1.001 3000
#> emax[22] -1.308 0.113 -1.531 -1.384 -1.308 -1.230 -1.086 1.002 1700
#> emax[23] -0.214 0.069 -0.349 -0.260 -0.212 -0.170 -0.075 1.001 3000
#> emax[24] -0.331 0.070 -0.470 -0.379 -0.329 -0.283 -0.195 1.002 2200
#> emax[25] -0.765 0.073 -0.907 -0.812 -0.765 -0.715 -0.620 1.001 3000
#> emax[26] -0.825 0.097 -1.020 -0.888 -0.825 -0.760 -0.632 1.001 3000
#> emax[27] -0.785 0.120 -1.020 -0.867 -0.783 -0.703 -0.553 1.001 3000
#> emax[28] -1.018 0.121 -1.260 -1.099 -1.016 -0.934 -0.788 1.001 3000
#> emax[29] -0.831 0.123 -1.073 -0.916 -0.829 -0.746 -0.596 1.001 3000
#> et50 0.462 0.044 0.384 0.432 0.459 0.488 0.560 1.003 880
#> hill 0.589 0.078 0.502 0.527 0.567 0.632 0.782 1.008 3000
#> rho 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1
#> totresdev 837.278 13.773 812.831 827.518 836.731 846.434 865.744 1.001 3000
#> deviance -42.761 13.773 -67.208 -52.522 -43.308 -33.605 -14.295 1.001 3000
#>
#> For each parameter, n.eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
#>
#> DIC info (using the rule, pD = var(deviance)/2)
#> pD = 94.9 and DIC = 51.6
#> DIC is an estimate of expected predictive error (lower deviance is better).
summary(result)
#> ========================================
#> Time-course MBNMA
#> ========================================
#>
#> Time-course function: emax
#> Data modelled with intercept
#>
#> emax parameter
#> Pooling: relative effects
#> Method: common treatment effects
#>
#> |Treatment |Parameter | Median| 2.5%| 97.5%|
#> |:---------|:---------|-------:|-------:|-------:|
#> |Pl_0 |emax[1] | 0.0000| 0.0000| 0.0000|
#> |Ce_100 |emax[2] | -0.6409| -0.8503| -0.4353|
#> |Ce_200 |emax[3] | -0.9304| -1.0179| -0.8407|
#> |Ce_400 |emax[4] | -1.0367| -1.2423| -0.8411|
#> |Du_90 |emax[5] | -0.6262| -1.0181| -0.2485|
#> |Et_10 |emax[6] | -0.1182| -0.4044| 0.1527|
#> |Et_30 |emax[7] | -1.2296| -1.3695| -1.0863|
#> |Et_5 |emax[8] | -0.1185| -0.4011| 0.1623|
#> |Et_60 |emax[9] | -1.8925| -2.1184| -1.6706|
#> |Et_90 |emax[10] | -1.8955| -2.2072| -1.5916|
#> |Lu_100 |emax[11] | -0.8764| -0.9972| -0.7565|
#> |Lu_200 |emax[12] | -0.8573| -0.9816| -0.7340|
#> |Lu_400 |emax[13] | -1.0609| -1.2138| -0.9111|
#> |Lu_NA |emax[14] | -0.9830| -1.2378| -0.7487|
#> |Na_1000 |emax[15] | -1.3173| -1.4403| -1.1901|
#> |Na_1500 |emax[16] | -1.2194| -1.3736| -1.0712|
#> |Na_250 |emax[17] | 0.3597| 0.0904| 0.6316|
#> |Na_750 |emax[18] | -0.9226| -1.0971| -0.7532|
#> |Ox_44 |emax[19] | -1.2872| -1.7550| -0.8242|
#> |Ro_12 |emax[20] | -0.8819| -1.0836| -0.6783|
#> |Ro_125 |emax[21] | -2.6318| -3.0544| -2.2247|
#> |Ro_25 |emax[22] | -1.3078| -1.5313| -1.0865|
#> |Tr_100 |emax[23] | -0.2119| -0.3495| -0.0754|
#> |Tr_200 |emax[24] | -0.3294| -0.4704| -0.1946|
#> |Tr_300 |emax[25] | -0.7649| -0.9071| -0.6204|
#> |Tr_400 |emax[26] | -0.8248| -1.0197| -0.6322|
#> |Va_10 |emax[27] | -0.7834| -1.0197| -0.5529|
#> |Va_20 |emax[28] | -1.0157| -1.2601| -0.7878|
#> |Va_5 |emax[29] | -0.8291| -1.0729| -0.5962|
#>
#>
#> et50 parameter
#> Pooling: absolute effects
#> Method: common treatment effects
#>
#> |Treatment |Parameter | Median| 2.5%| 97.5%|
#> |:---------|:---------|------:|------:|------:|
#> |Pl_0 |et50 | 0.4595| 0.3841| 0.5597|
#> |Ce_100 |et50 | 0.4595| 0.3841| 0.5597|
#> |Ce_200 |et50 | 0.4595| 0.3841| 0.5597|
#> |Ce_400 |et50 | 0.4595| 0.3841| 0.5597|
#> |Du_90 |et50 | 0.4595| 0.3841| 0.5597|
#> |Et_10 |et50 | 0.4595| 0.3841| 0.5597|
#> |Et_30 |et50 | 0.4595| 0.3841| 0.5597|
#> |Et_5 |et50 | 0.4595| 0.3841| 0.5597|
#> |Et_60 |et50 | 0.4595| 0.3841| 0.5597|
#> |Et_90 |et50 | 0.4595| 0.3841| 0.5597|
#> |Lu_100 |et50 | 0.4595| 0.3841| 0.5597|
#> |Lu_200 |et50 | 0.4595| 0.3841| 0.5597|
#> |Lu_400 |et50 | 0.4595| 0.3841| 0.5597|
#> |Lu_NA |et50 | 0.4595| 0.3841| 0.5597|
#> |Na_1000 |et50 | 0.4595| 0.3841| 0.5597|
#> |Na_1500 |et50 | 0.4595| 0.3841| 0.5597|
#> |Na_250 |et50 | 0.4595| 0.3841| 0.5597|
#> |Na_750 |et50 | 0.4595| 0.3841| 0.5597|
#> |Ox_44 |et50 | 0.4595| 0.3841| 0.5597|
#> |Ro_12 |et50 | 0.4595| 0.3841| 0.5597|
#> |Ro_125 |et50 | 0.4595| 0.3841| 0.5597|
#> |Ro_25 |et50 | 0.4595| 0.3841| 0.5597|
#> |Tr_100 |et50 | 0.4595| 0.3841| 0.5597|
#> |Tr_200 |et50 | 0.4595| 0.3841| 0.5597|
#> |Tr_300 |et50 | 0.4595| 0.3841| 0.5597|
#> |Tr_400 |et50 | 0.4595| 0.3841| 0.5597|
#> |Va_10 |et50 | 0.4595| 0.3841| 0.5597|
#> |Va_20 |et50 | 0.4595| 0.3841| 0.5597|
#> |Va_5 |et50 | 0.4595| 0.3841| 0.5597|
#>
#>
#> hill parameter
#> Pooling: absolute effects
#> Method: common treatment effects
#>
#> |Treatment |Parameter | Median| 2.5%| 97.5%|
#> |:---------|:---------|------:|------:|------:|
#> |Pl_0 |hill | 0.5668| 0.5023| 0.7822|
#> |Ce_100 |hill | 0.5668| 0.5023| 0.7822|
#> |Ce_200 |hill | 0.5668| 0.5023| 0.7822|
#> |Ce_400 |hill | 0.5668| 0.5023| 0.7822|
#> |Du_90 |hill | 0.5668| 0.5023| 0.7822|
#> |Et_10 |hill | 0.5668| 0.5023| 0.7822|
#> |Et_30 |hill | 0.5668| 0.5023| 0.7822|
#> |Et_5 |hill | 0.5668| 0.5023| 0.7822|
#> |Et_60 |hill | 0.5668| 0.5023| 0.7822|
#> |Et_90 |hill | 0.5668| 0.5023| 0.7822|
#> |Lu_100 |hill | 0.5668| 0.5023| 0.7822|
#> |Lu_200 |hill | 0.5668| 0.5023| 0.7822|
#> |Lu_400 |hill | 0.5668| 0.5023| 0.7822|
#> |Lu_NA |hill | 0.5668| 0.5023| 0.7822|
#> |Na_1000 |hill | 0.5668| 0.5023| 0.7822|
#> |Na_1500 |hill | 0.5668| 0.5023| 0.7822|
#> |Na_250 |hill | 0.5668| 0.5023| 0.7822|
#> |Na_750 |hill | 0.5668| 0.5023| 0.7822|
#> |Ox_44 |hill | 0.5668| 0.5023| 0.7822|
#> |Ro_12 |hill | 0.5668| 0.5023| 0.7822|
#> |Ro_125 |hill | 0.5668| 0.5023| 0.7822|
#> |Ro_25 |hill | 0.5668| 0.5023| 0.7822|
#> |Tr_100 |hill | 0.5668| 0.5023| 0.7822|
#> |Tr_200 |hill | 0.5668| 0.5023| 0.7822|
#> |Tr_300 |hill | 0.5668| 0.5023| 0.7822|
#> |Tr_400 |hill | 0.5668| 0.5023| 0.7822|
#> |Va_10 |hill | 0.5668| 0.5023| 0.7822|
#> |Va_20 |hill | 0.5668| 0.5023| 0.7822|
#> |Va_5 |hill | 0.5668| 0.5023| 0.7822|
#>
#>
#>
#> Correlation between time points
#> Covariance structure: varadj
#> Rho assigned a numeric value: 0
#>
#> #### Model Fit Statistics ####
#>
#> Effective number of parameters:
#> pD (pV) calculated using the rule, pD = var(deviance)/2 = 95
#> Deviance = -43
#> Residual deviance = 837
#> Deviance Information Criterion (DIC) = 52
#>
# Plot forest plot of results
plot(result)
###### Additional model arguments ######
# Use gout dataset
goutnet <- mb.network(goutSUA_CFBcomb)
#> Reference treatment is `Plac`
#> Studies reporting change from baseline automatically identified from the data
# Define a user-defined time-course relationship for use in mb.run
timecourse <- ~ exp(beta.1 * time) + (time^beta.2)
# Run model with:
# user-defined time-course function
# random relative effects on beta.1
# default common effects on beta.2
# default relative pooling on beta.1 and beta.2
# common class effect on beta.2
mb.run(goutnet, fun=tuser(fun=timecourse, method.1="random"),
class.effect=list(beta.1="common"))
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 224
#> Unobserved stochastic nodes: 121
#> Total graph size: 4851
#>
#> Initializing model
#>
#> Inference for Bugs model at "/tmp/RtmpAXd0fj/file176e2e3b581b", fit using jags,
#> 3 chains, each with 20000 iterations (first 10000 discarded), n.thin = 10
#> n.sims = 3000 iterations saved
#> mu.vect sd.vect 2.5% 25% 50% 75%
#> D.1[1] 0.000 0.000 0.000 0.000 0.000 0.000
#> D.1[2] 8.047 21.200 -33.980 -5.781 6.886 20.366
#> D.1[3] -6.036 31.027 -62.924 -23.709 -9.403 9.036
#> D.1[4] 2.203 27.596 -50.866 -15.753 1.816 21.495
#> D.1[5] -19.347 26.870 -75.359 -36.599 -19.264 -1.494
#> D.1[6] -19.204 20.516 -58.088 -32.177 -18.491 -7.257
#> D.1[7] -16.018 30.387 -80.449 -35.759 -16.756 4.940
#> d.1[1] 0.000 0.000 0.000 0.000 0.000 0.000
#> d.1[2] 8.047 21.200 -33.980 -5.781 6.886 20.366
#> d.1[3] 8.047 21.200 -33.980 -5.781 6.886 20.366
#> d.1[4] 8.047 21.200 -33.980 -5.781 6.886 20.366
#> d.1[5] 8.047 21.200 -33.980 -5.781 6.886 20.366
#> d.1[6] -6.036 31.027 -62.924 -23.709 -9.403 9.036
#> d.1[7] 2.203 27.596 -50.866 -15.753 1.816 21.495
#> d.1[8] 2.203 27.596 -50.866 -15.753 1.816 21.495
#> d.1[9] 2.203 27.596 -50.866 -15.753 1.816 21.495
#> d.1[10] 2.203 27.596 -50.866 -15.753 1.816 21.495
#> d.1[11] -19.347 26.870 -75.359 -36.599 -19.264 -1.494
#> d.1[12] -19.204 20.516 -58.088 -32.177 -18.491 -7.257
#> d.1[13] -19.204 20.516 -58.088 -32.177 -18.491 -7.257
#> d.1[14] -19.204 20.516 -58.088 -32.177 -18.491 -7.257
#> d.1[15] -19.204 20.516 -58.088 -32.177 -18.491 -7.257
#> d.1[16] -16.018 30.387 -80.449 -35.759 -16.756 4.940
#> d.1[17] -16.018 30.387 -80.449 -35.759 -16.756 4.940
#> d.1[18] -16.018 30.387 -80.449 -35.759 -16.756 4.940
#> d.1[19] -16.018 30.387 -80.449 -35.759 -16.756 4.940
#> d.2[1] 0.000 0.000 0.000 0.000 0.000 0.000
#> d.2[2] -4.124 29.585 -62.986 -23.284 -3.580 14.937
#> d.2[3] 3.214 29.965 -54.600 -17.142 3.345 23.284
#> d.2[4] -16.218 9.861 -41.224 -21.258 -13.755 -8.741
#> d.2[5] 2.980 29.513 -52.998 -17.064 2.961 23.146
#> d.2[6] -18.673 27.342 -72.928 -34.486 -19.041 -6.894
#> d.2[7] -3.524 30.274 -65.512 -23.756 -3.162 16.828
#> d.2[8] -7.311 27.497 -63.185 -25.868 -6.906 10.939
#> d.2[9] -2.213 30.311 -64.007 -22.318 -1.467 18.877
#> d.2[10] -4.845 28.884 -63.772 -24.042 -4.059 13.890
#> d.2[11] -17.266 25.537 -68.699 -34.079 -16.994 -0.271
#> d.2[12] -11.878 26.469 -65.694 -29.007 -10.998 5.989
#> d.2[13] -17.549 26.484 -68.051 -34.409 -18.006 -2.351
#> d.2[14] -15.545 21.625 -60.060 -29.436 -14.931 -1.564
#> d.2[15] -16.123 24.497 -67.627 -31.838 -15.188 0.287
#> d.2[16] 3.606 30.278 -56.255 -16.396 2.859 24.123
#> d.2[17] -24.814 21.224 -71.678 -36.976 -22.192 -11.040
#> d.2[18] -23.021 19.986 -64.380 -35.057 -20.983 -10.501
#> d.2[19] -26.040 21.391 -73.237 -38.837 -23.248 -11.851
#> rho 0.000 0.000 0.000 0.000 0.000 0.000
#> sd.beta.1 3.509 2.491 0.330 1.495 3.010 4.987
#> totresdev 2013066.484 6.522 2013056.406 2013062.454 2013064.973 2013068.762
#> deviance 2012372.295 6.522 2012362.218 2012368.265 2012370.784 2012374.574
#> 97.5% Rhat n.eff
#> D.1[1] 0.000 1.000 1
#> D.1[2] 57.647 1.197 16
#> D.1[3] 63.587 1.381 9
#> D.1[4] 53.186 1.164 19
#> D.1[5] 33.190 1.011 360
#> D.1[6] 25.992 1.183 30
#> D.1[7] 48.398 1.604 7
#> d.1[1] 0.000 1.000 1
#> d.1[2] 57.647 1.197 16
#> d.1[3] 57.647 1.197 16
#> d.1[4] 57.647 1.197 16
#> d.1[5] 57.647 1.197 16
#> d.1[6] 63.587 1.381 9
#> d.1[7] 53.186 1.164 19
#> d.1[8] 53.186 1.164 19
#> d.1[9] 53.186 1.164 19
#> d.1[10] 53.186 1.164 19
#> d.1[11] 33.190 1.011 360
#> d.1[12] 25.992 1.183 30
#> d.1[13] 25.992 1.183 30
#> d.1[14] 25.992 1.183 30
#> d.1[15] 25.992 1.183 30
#> d.1[16] 48.398 1.604 7
#> d.1[17] 48.398 1.604 7
#> d.1[18] 48.398 1.604 7
#> d.1[19] 48.398 1.604 7
#> d.2[1] 0.000 1.000 1
#> d.2[2] 54.111 1.002 1800
#> d.2[3] 62.723 1.001 3000
#> d.2[4] -4.523 1.002 1200
#> d.2[5] 61.407 1.001 3000
#> d.2[6] 42.845 1.185 17
#> d.2[7] 55.059 1.001 2400
#> d.2[8] 46.511 1.001 3000
#> d.2[9] 56.321 1.001 2800
#> d.2[10] 52.863 1.001 3000
#> d.2[11] 30.903 1.001 3000
#> d.2[12] 39.175 1.002 1200
#> d.2[13] 38.500 1.157 18
#> d.2[14] 24.795 1.002 1000
#> d.2[15] 29.802 1.001 2600
#> d.2[16] 64.519 1.004 590
#> d.2[17] 17.332 1.096 31
#> d.2[18] 18.625 1.129 24
#> d.2[19] 15.137 1.074 47
#> rho 0.000 1.000 1
#> sd.beta.1 9.332 1.081 37
#> totresdev 2013082.871 1.000 1
#> deviance 2012388.682 1.000 1
#>
#> For each parameter, n.eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
#>
#> DIC info (using the rule, pD = var(deviance)/2)
#> pD = 18.6 and DIC = 2012389.3
#> DIC is an estimate of expected predictive error (lower deviance is better).
# Fit a log-linear MBNMA
# with variance adjustment for correlation between time-points
result <- mb.run(network, fun=tloglin(),
rho="dunif(0,1)", covar="varadj")
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 417
#> Unobserved stochastic nodes: 89
#> Total graph size: 7303
#>
#> Initializing model
#>
# }