Plot fitted values from MBNMA model
fitplot.Rd
Plot fitted values from MBNMA model
Usage
fitplot(
mbnma,
treat.labs = NULL,
disp.obs = TRUE,
n.iter = round(mbnma$BUGSoutput$n.iter/4),
n.thin = mbnma$BUGSoutput$n.thin,
...
)
Arguments
- mbnma
An S3 object of class
"mbnma"
generated by running a time-course MBNMA model- treat.labs
A character vector of treatment labels with which to name graph panels. Can use
mb.network()[["treatments"]]
with original dataset if in doubt.- disp.obs
A boolean object to indicate whether raw data responses should be plotted as points on the graph
- n.iter
number of total iterations per chain (including burn in; default: 2000)
- n.thin
thinning rate. Must be a positive integer. Set
n.thin
> 1 to save memory and computation time ifn.iter
is large. Default ismax(1, floor(n.chains * (n.iter-n.burnin) / 1000))
which will only thin if there are at least 2000 simulations.- ...
Arguments to be sent to
ggplot2::ggplot()
Value
Generates a plot of fitted values from the MBNMA model and returns a list containing
the plot (as an object of class c("gg", "ggplot")
), and a data.frame of posterior mean
fitted values for each observation.
Details
Fitted values should only be plotted for models that have converged successfully.
If fitted values (theta
) have not been monitored in mbnma$parameters.to.save
then additional iterations will have to be run to get results for these.
Examples
# \donttest{
# Make network
painnet <- mb.network(osteopain)
#> Reference treatment is `Pl_0`
#> Studies reporting change from baseline automatically identified from the data
# Run MBNMA
mbnma <- mb.run(painnet,
fun=temax(pool.emax="rel", method.emax="common",
pool.et50="abs", method.et50="random"))
#> 'et50' parameters must take positive values.
#> Default half-normal prior restricts posterior to positive values.
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 417
#> Unobserved stochastic nodes: 194
#> Total graph size: 8210
#>
#> Initializing model
#>
# Plot fitted values from the model
# Monitor fitted values for 500 additional iterations
fitplot(mbnma, n.iter=500)
#> `theta` not monitored in mbnma$parameters.to.save.
#> additional iterations will be run in order to obtain results
# }