Rank predictions at a specific time point
rank.mb.predict.Rd
Rank predictions at a specific time point
Arguments
- x
an object of
class("mb.predict")
that contains predictions from an MBNMA model- time
a number indicating the time point at which predictions should be ranked. It must be one of the time points for which predictions in
x
are available.- lower_better
Indicates whether negative responses are better (
lower_better=TRUE
) or positive responses are better (lower_better=FALSE
)- treats
A character vector of treatment/class names for which responses have been predicted in
x
As default, rankings will be calculated for all treatments/classes inx
.- ...
Arguments to be passed to methods
Examples
# \donttest{
# Create an mb.network object from a dataset
network <- mb.network(osteopain)
#> Reference treatment is `Pl_0`
#> Studies reporting change from baseline automatically identified from the data
# Run an MBNMA model with an Emax time-course
emax <- mb.run(network,
fun=temax(pool.emax="rel", method.emax="common",
pool.et50="abs", method.et50="common"))
#> 'et50' parameters must take positive values.
#> Default half-normal prior restricts posterior to positive values.
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 417
#> Unobserved stochastic nodes: 89
#> Total graph size: 7703
#>
#> Initializing model
#>
# Predict responses using a stochastic baseline (E0) and a distribution for the
#network reference treatment
preds <- predict(emax, E0=7,
ref.resp=list(emax=~rnorm(n, -0.5, 0.05)))
#> Priors required for: mu.1
#> Success: Elements in prior match consistency time-course treatment effect parameters
# Rank predictions at latest predicted time-point
rank(preds, lower_better=TRUE)
#>
#> ========================================
#> Treatment rankings
#> ========================================
#>
#> Predictions at time = 24 ranking
#>
#> |Treatment | Mean| Median| 2.5%| 97.5%|
#> |:---------|-----:|------:|----:|-----:|
#> |Pl_0 | 27.59| 28| 26| 28|
#> |Ce_100 | 21.86| 22| 18| 23|
#> |Ce_200 | 13.74| 14| 11| 17|
#> |Ce_400 | 10.92| 11| 7| 17|
#> |Du_90 | 20.84| 22| 10| 25|
#> |Et_10 | 26.33| 26| 24| 28|
#> |Et_30 | 6.85| 7| 4| 9|
#> |Et_5 | 26.31| 26| 24| 28|
#> |Et_60 | 2.50| 3| 2| 3|
#> |Et_90 | 2.52| 3| 2| 3|
#> |Lu_100 | 16.22| 16| 12| 21|
#> |Lu_200 | 16.79| 17| 12| 21|
#> |Lu_400 | 10.10| 10| 7| 14|
#> |Lu_NA | 12.34| 12| 7| 21|
#> |Na_1000 | 5.11| 5| 4| 7|
#> |Na_1500 | 7.02| 7| 4| 10|
#> |Na_250 | 28.98| 29| 29| 29|
#> |Na_750 | 14.42| 14| 10| 20|
#> |Ox_44 | 7.01| 6| 4| 18|
#> |Ro_12 | 16.10| 16| 10| 22|
#> |Ro_125 | 1.00| 1| 1| 1|
#> |Ro_25 | 5.62| 5| 4| 9|
#> |Tr_100 | 25.49| 25| 24| 27|
#> |Tr_200 | 24.17| 24| 23| 26|
#> |Tr_300 | 19.81| 20| 15| 23|
#> |Tr_400 | 17.73| 18| 11| 22|
#> |Va_10 | 18.72| 20| 11| 23|
#> |Va_20 | 11.49| 11| 7| 19|
#> |Va_5 | 17.43| 18| 10| 23|
#>
#>
#### Rank predictions at 5 weeks follow-up ####
# First ensure responses are predicted at 5 weeks
preds <- predict(emax, E0=7,
ref.resp=list(emax=~rnorm(n, -0.5, 0.05)),
times=c(0,5,10))
#> Priors required for: mu.1
#> Success: Elements in prior match consistency time-course treatment effect parameters
# Rank predictions at 5 weeks follow-up
ranks <- rank(preds, lower_better=TRUE, time=5)
# Plot ranks
plot(ranks)
# }