Skip to contents

Takes the closest time point from each arm in each study to a specified time (t) within an mb.network object. Useful for network plots or exploring standard NMA.

Usage

get.closest.time(network, t = stats::median(network$data.ab$time))

Arguments

network

An object of class "mb.network".

t

The time point at which

Value

A data frame in long format of responses at the closest time point to t in each arm of each study.

Examples


# Using the alogliptin dataset
network <- mb.network(alog_pcfb)
#> Reference treatment is `placebo`
#> Studies reporting change from baseline automatically identified from the data

# Take a single follow-up time from each study...
# ...closest to 7
get.closest.time(network, t=7)
#> # A tibble: 46 × 13
#> # Groups:   studyID, arm [46]
#>    studyID  time treatment  narm   arm     y     se     n clinicaltrialGov_ID
#>      <dbl> <dbl>     <dbl> <int> <int> <dbl>  <dbl> <dbl> <chr>              
#>  1       1     2         1     5     1  0    0.0216    75 NCT01263470        
#>  2       1     2         2     5     2 -0.16 0.0172    79 NCT01263470        
#>  3       1     2         3     5     3 -0.17 0.0212    84 NCT01263470        
#>  4       1     2         4     5     4 -0.16 0.0210    79 NCT01263470        
#>  5       1     2         5     5     5 -0.15 0.0203    79 NCT01263470        
#>  6       2     4         1     3     1 -0.11 0.052     63 NCT00286455        
#>  7       2     4         3     3     2 -0.37 0.035    131 NCT00286455        
#>  8       2     4         4     3     3 -0.45 0.036    128 NCT00286455        
#>  9       3    12         2     4     1 -0.55 0.0726    93 NCT01263496        
#> 10       3    12         3     4     2 -0.7  0.0548    97 NCT01263496        
#> # ℹ 36 more rows
#> # ℹ 4 more variables: agent <chr>, dose <dbl>, fupcount <int>, fups <int>

# ...closest to 20
get.closest.time(network, t=7)
#> # A tibble: 46 × 13
#> # Groups:   studyID, arm [46]
#>    studyID  time treatment  narm   arm     y     se     n clinicaltrialGov_ID
#>      <dbl> <dbl>     <dbl> <int> <int> <dbl>  <dbl> <dbl> <chr>              
#>  1       1     2         1     5     1  0    0.0216    75 NCT01263470        
#>  2       1     2         2     5     2 -0.16 0.0172    79 NCT01263470        
#>  3       1     2         3     5     3 -0.17 0.0212    84 NCT01263470        
#>  4       1     2         4     5     4 -0.16 0.0210    79 NCT01263470        
#>  5       1     2         5     5     5 -0.15 0.0203    79 NCT01263470        
#>  6       2     4         1     3     1 -0.11 0.052     63 NCT00286455        
#>  7       2     4         3     3     2 -0.37 0.035    131 NCT00286455        
#>  8       2     4         4     3     3 -0.45 0.036    128 NCT00286455        
#>  9       3    12         2     4     1 -0.55 0.0726    93 NCT01263496        
#> 10       3    12         3     4     2 -0.7  0.0548    97 NCT01263496        
#> # ℹ 36 more rows
#> # ℹ 4 more variables: agent <chr>, dose <dbl>, fupcount <int>, fups <int>

# ...closest to the median follow-up across all studies
get.closest.time(network, t=26)
#> # A tibble: 46 × 13
#> # Groups:   studyID, arm [46]
#>    studyID  time treatment  narm   arm     y     se     n clinicaltrialGov_ID
#>      <dbl> <dbl>     <dbl> <int> <int> <dbl>  <dbl> <dbl> <chr>              
#>  1       1     2         1     5     1  0    0.0216    75 NCT01263470        
#>  2       1     2         2     5     2 -0.16 0.0172    79 NCT01263470        
#>  3       1     2         3     5     3 -0.17 0.0212    84 NCT01263470        
#>  4       1     2         4     5     4 -0.16 0.0210    79 NCT01263470        
#>  5       1     2         5     5     5 -0.15 0.0203    79 NCT01263470        
#>  6       2     4         1     3     1 -0.11 0.052     63 NCT00286455        
#>  7       2     4         3     3     2 -0.37 0.035    131 NCT00286455        
#>  8       2     4         4     3     3 -0.45 0.036    128 NCT00286455        
#>  9       3    12         2     4     1 -0.55 0.0726    93 NCT01263496        
#> 10       3    12         3     4     2 -0.7  0.0548    97 NCT01263496        
#> # ℹ 36 more rows
#> # ℹ 4 more variables: agent <chr>, dose <dbl>, fupcount <int>, fups <int>