Skip to contents

Uses mbnma time-course parameter estimates to calculate treatment differences between treatments or classes at a particular time-point. Can be used to compare treatments evaluated in studies at different follow-up times, or even to compare treatments in different MBNMA models via a common comparator.

Usage

get.relative(
  mbnma,
  mbnma.add = NULL,
  time = max(mbnma$model.arg$jagsdata$time, na.rm = TRUE),
  treats = unique(c(mbnma$network$treatments, mbnma.add$network$treatments)),
  classes = NULL,
  lim = "cred"
)

Arguments

mbnma

An S3 object of class "mbnma" generated by running a time-course MBNMA model

mbnma.add

An S3 object of class("mbnma") generated by running a time-course MBNMA model. This should only be specified if results from two different MBNMA models are to be combined to perform a 2-stage MBNMA (see Details).

time

A numeric value for the time at which to estimate relative effects/mean differences.

treats

A character vector of treatment names for which to calculate relative effects/mean differences. Must be a subset of mbnma$network$treatments.

classes

A character vector of class names for which to calculate relative effects/mean differences. Must be a subset of mbnma$network$classes. Only works for class effect models.

lim

Specifies calculation of either 95% credible intervals (lim="cred") or 95% prediction intervals (lim="pred").

Value

An object of class "relative.array" list containing:

  • The time-point for which results are estimated

  • Matrices of posterior means, medians, SDs and upper and lower 95% credible intervals for the differences between each treatment

  • An array containing MCMC results for the differences between all treatments specified in treats or all classes specified in classes.

Results are reported in tables as the row-defined treatment minus the column-defined treatment.

Details

get.relative() can also be used to perform a 2-stage MBNMA that allows synthesis of results from two different MBNMA models via a single common comparator. In an MBNMA model, all treatments must share the same time-course function. However, a 2-stage approach can enable fitting of different time-course functions to different sets ("subnetworks") of treatments. For example, some treatments may have rich time-course information, allowing for a more complex time-course function to be used, whereas others may be sparse, requiring a simpler time-course function.

Relative comparisons between treatments in the two datasets at specific follow-up times can then be estimated from MBNMA predicted effects versus a common comparator using the Bucher method and assuming consistency. See the MBNMAtime vignette for further details.

Examples

# \donttest{
# Create an mb.network object from a dataset
alognet <- mb.network(alog_pcfb)
#> Reference treatment is `placebo`
#> Studies reporting change from baseline automatically identified from the data

# Run a quadratic time-course MBNMA using the alogliptin dataset
mbnma <- mb.run(alognet,
  fun=tpoly(degree=2,
  pool.1="rel", method.1="random",
  pool.2="rel", method.2="common"
  )
)
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 233
#>    Unobserved stochastic nodes: 71
#>    Total graph size: 4375
#> 
#> Initializing model
#> 

# Calculate differences between all treatments at 20 weeks follow-up
allres <- get.relative(mbnma, time=20)

# Calculate difference between a subset of treatments at 10 weeks follow-up
subres <- get.relative(mbnma, time=10,
  treats=c("alog_50", "alog_25", "placebo"))



###########################
##### 2-stage MBNMA #####
###########################

# Using the osteoarthritis dataset
# With placebo (Pl_0) as common comparator between subnetworks

#### Sparse model ####

# Treatments on which time-course data is limited
sparse.trt <- c("Ce_100", "Ce_400", "Du_90", "Lu_200", "Lu_400",
  "Lu_NA", "Et_5", "Ox_44")

# Create a subnetwork of studies comparing these treatments
sparse.df <- osteopain %>% dplyr::group_by(studyID) %>%
  dplyr::filter(any(treatment %in% sparse.trt)) %>%
  dplyr::ungroup() %>%
  subset(treatment %in% c("Pl_0", sparse.trt))

sparse.net <- mb.network(sparse.df)
#> Reference treatment is `Pl_0`
#> Studies reporting change from baseline automatically identified from the data

# Run a ITP MBNMA with a known rate
sparse.mbnma <- mb.run(sparse.net, fun=titp(method.rate=0.8, pool.rate="abs"))
#> 'rate' parameters must take positive values.
#>  Default half-normal prior restricts posterior to positive values.
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 76
#>    Unobserved stochastic nodes: 28
#>    Total graph size: 1447
#> 
#> Initializing model
#> 


#### Complex model ####

# Treatments on which time-course data is rich
rich.trt <- levels(osteopain$treatment)[!levels(osteopain$treatment) %in%
  c("Pl_0", "Ce_100", "Ce_400", "Du_90", "Lu_200",
    "Lu_400", "Lu_NA", "Et_5", "Ox_44")]

# Create a subnetwork of studies comparing these treatments
rich.df <- osteopain %>% dplyr::group_by(studyID) %>%
  dplyr::filter(any(treatment %in% rich.trt)) %>%
  dplyr::ungroup() %>%
  subset(treatment %in% c("Pl_0", rich.trt))

rich.net <- mb.network(rich.df)
#> Reference treatment is `Pl_0`
#> Studies reporting change from baseline automatically identified from the data

# Run a Emax MBNMA
rich.mbnma <- mb.run(rich.net, temax(p.expon = FALSE))
#> 'et50' parameters must take positive values.
#>  Default half-normal prior restricts posterior to positive values.
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 363
#>    Unobserved stochastic nodes: 121
#>    Total graph size: 7221
#> 
#> Initializing model
#> 


#### Calculate relative effects between models ####

# At 10 weeks follow-up
rels.sparse <- get.relative(sparse.mbnma, time=10)
rels.rich <- get.relative(rich.mbnma, time=10)

rels.all <- get.relative(mbnma=rich.mbnma,
  mbnma.add=sparse.mbnma, time=10)

print(rels.all$median)
#>                 Pl_0      Ce_200        Et_10       Et_30       Et_60
#> Pl_0              NA  0.96123029  0.471824255  1.23319633  1.64623732
#> Ce_200  -0.961230289          NA -0.488517123  0.26982558  0.68759516
#> Et_10   -0.471824255  0.48851712           NA  0.75588620  1.17312804
#> Et_30   -1.233196329 -0.26982558 -0.755886204          NA  0.41611695
#> Et_60   -1.646237321 -0.68759516 -1.173128043 -0.41611695          NA
#> Et_90   -1.716362353 -0.75476445 -1.241835478 -0.48212480 -0.06783837
#> Lu_100  -0.921570119  0.03860348 -0.443375024  0.31097449  0.72461454
#> Na_1000 -1.197453836 -0.23725884 -0.719664349  0.03474327  0.44923152
#> Na_1500 -1.126654188 -0.16746178 -0.654274437  0.10544342  0.52060234
#> Na_250  -0.003032188  0.95836525  0.469475442  1.22358117  1.64271052
#> Na_750  -0.874496903  0.08494509 -0.403621370  0.35594649  0.77189792
#> Ro_12   -0.943590417  0.01719680 -0.476880851  0.28704083  0.70226061
#> Ro_125  -2.353032604 -1.39801167 -1.882358979 -1.11874502 -0.70618140
#> Ro_25   -1.296648992 -0.33759680 -0.827353799 -0.06224436  0.35093433
#> Tr_100  -0.481067261  0.47910874 -0.005954795  0.74866247  1.16696930
#> Tr_200  -0.486750052  0.47275291 -0.011930021  0.74700398  1.16123830
#> Tr_300  -0.836699813  0.12318711 -0.360746697  0.39638833  0.80837979
#> Tr_400  -0.929274743  0.03244039 -0.447945878  0.30212079  0.71797980
#> Va_10   -0.751112284  0.20850862 -0.278066165  0.48066599  0.89470222
#> Va_20   -0.986406307 -0.02670413 -0.512335464  0.24378099  0.65924194
#> Va_5    -0.848454607  0.11294666 -0.370686801  0.38404211  0.80020365
#> Ce_100  -0.547106413  0.41449631 -0.074631536  0.68483948  1.10181849
#> Ce_400  -0.897424671  0.06267434 -0.422618293  0.33357910  0.74999365
#> Du_90   -0.552811878  0.40389292 -0.081354946  0.67430175  1.09407891
#> Et_5    -1.025098312 -0.06400784 -0.544759471  0.21206723  0.62506850
#> Lu_200  -0.549618629  0.41398278 -0.070557690  0.68546477  1.09721591
#> Lu_400  -0.708309357  0.25195628 -0.235739750  0.52457511  0.93798481
#> Lu_NA   -0.802650389  0.15844761 -0.327192887  0.43291457  0.84677715
#> Ox_44   -1.079915915 -0.11889661 -0.603250023  0.15346238  0.56631037
#>               Et_90       Lu_100     Na_1000     Na_1500       Na_250
#> Pl_0     1.71636235  0.921570119  1.19745384  1.12665419  0.003032188
#> Ce_200   0.75476445 -0.038603477  0.23725884  0.16746178 -0.958365253
#> Et_10    1.24183548  0.443375024  0.71966435  0.65427444 -0.469475442
#> Et_30    0.48212480 -0.310974494 -0.03474327 -0.10544342 -1.223581166
#> Et_60    0.06783837 -0.724614543 -0.44923152 -0.52060234 -1.642710521
#> Et_90            NA -0.797802086 -0.51402985 -0.58599228 -1.710025060
#> Lu_100   0.79780209           NA  0.27550715  0.20587285 -0.915216562
#> Na_1000  0.51402985 -0.275507148          NA -0.07114274 -1.194420135
#> Na_1500  0.58599228 -0.205872850  0.07114274          NA -1.122800276
#> Na_250   1.71002506  0.915216562  1.19442013  1.12280028           NA
#> Na_750   0.83716098  0.044133277  0.32463364  0.25342193 -0.868361852
#> Ro_12    0.76711491 -0.025583439  0.25103835  0.18327573 -0.944701044
#> Ro_125  -0.63823496 -1.432027415 -1.15981304 -1.22479209 -2.346802059
#> Ro_25    0.41736819 -0.379130973 -0.09951430 -0.16951357 -1.292917581
#> Tr_100   1.23523909  0.443738549  0.71869238  0.64781728 -0.477064565
#> Tr_200   1.23429743  0.434111821  0.70940069  0.64031888 -0.485990848
#> Tr_300   0.87738019  0.081739369  0.35914804  0.29059413 -0.833703924
#> Tr_400   0.78892114 -0.009496508  0.26815546  0.19561253 -0.925566963
#> Va_10    0.96091717  0.167964294  0.44467588  0.37928440 -0.747935162
#> Va_20    0.73026156 -0.065113366  0.21155204  0.14058846 -0.984487231
#> Va_5     0.86727634  0.072025782  0.35267714  0.27971273 -0.836692056
#> Ce_100   1.17082841  0.372070523  0.64948284  0.57861483 -0.541728215
#> Ce_400   0.81903089  0.024804064  0.30103037  0.23211700 -0.893281214
#> Du_90    1.16451948  0.362503490  0.64080736  0.57007372 -0.539676241
#> Et_5     0.69696300 -0.098412576  0.17241286  0.10376843 -1.020921221
#> Lu_200   1.17069258  0.372039153  0.65067936  0.57667359 -0.546292701
#> Lu_400   1.00953340  0.211598888  0.48852777  0.41938376 -0.706234304
#> Lu_NA    0.91372396  0.122095553  0.39563905  0.32391405 -0.795069568
#> Ox_44    0.64125547 -0.157875662  0.11780511  0.05204645 -1.064119094
#>              Na_750       Ro_12    Ro_125       Ro_25       Tr_100       Tr_200
#> Pl_0     0.87449690  0.94359042 2.3530326  1.29664899  0.481067261  0.486750052
#> Ce_200  -0.08494509 -0.01719680 1.3980117  0.33759680 -0.479108738 -0.472752908
#> Et_10    0.40362137  0.47688085 1.8823590  0.82735380  0.005954795  0.011930021
#> Et_30   -0.35594649 -0.28704083 1.1187450  0.06224436 -0.748662468 -0.747003982
#> Et_60   -0.77189792 -0.70226061 0.7061814 -0.35093433 -1.166969298 -1.161238302
#> Et_90   -0.83716098 -0.76711491 0.6382350 -0.41736819 -1.235239093 -1.234297431
#> Lu_100  -0.04413328  0.02558344 1.4320274  0.37913097 -0.443738549 -0.434111821
#> Na_1000 -0.32463364 -0.25103835 1.1598130  0.09951430 -0.718692383 -0.709400693
#> Na_1500 -0.25342193 -0.18327573 1.2247921  0.16951357 -0.647817280 -0.640318884
#> Na_250   0.86836185  0.94470104 2.3468021  1.29291758  0.477064565  0.485990848
#> Na_750           NA  0.06770470 1.4763742  0.42260337 -0.393336137 -0.390585582
#> Ro_12   -0.06770470          NA 1.4114676  0.35043929 -0.461710201 -0.460541327
#> Ro_125  -1.47637425 -1.41146762        NA -1.05223263 -1.873857069 -1.869730802
#> Ro_25   -0.42260337 -0.35043929 1.0522326          NA -0.817448634 -0.807190978
#> Tr_100   0.39333614  0.46171020 1.8738571  0.81744863           NA  0.007315778
#> Tr_200   0.39058558  0.46054133 1.8697308  0.80719098 -0.007315778           NA
#> Tr_300   0.04143359  0.10508936 1.5206254  0.45961240 -0.360353987 -0.351603146
#> Tr_400  -0.05256320  0.01575607 1.4248139  0.36907471 -0.453253902 -0.443688413
#> Va_10    0.12405536  0.18996765 1.6026502  0.54665644 -0.271494727 -0.268516655
#> Va_20   -0.11053463 -0.03950858 1.3708468  0.31140162 -0.505675234 -0.502728699
#> Va_5     0.02483031  0.09838481 1.5097411  0.44840514 -0.368181687 -0.362087309
#> Ce_100   0.32737955  0.39931514 1.8049612  0.75273408 -0.059583027 -0.060639860
#> Ce_400  -0.02289000  0.04807935 1.4582167  0.39923424 -0.417705607 -0.410449526
#> Du_90    0.32018043  0.39382317 1.7977575  0.74098845 -0.077752305 -0.070285866
#> Et_5    -0.14931909 -0.07746782 1.3382208  0.27547137 -0.541107043 -0.534361407
#> Lu_200   0.32796787  0.39883299 1.8072783  0.74409038 -0.066117326 -0.059863714
#> Lu_400   0.16657322  0.23772193 1.6496523  0.58685029 -0.226375951 -0.221790385
#> Lu_NA    0.07347024  0.14730453 1.5578680  0.50149382 -0.322898387 -0.311306790
#> Ox_44   -0.20233737 -0.13258368 1.2757510  0.21797916 -0.599951357 -0.589582307
#>              Tr_300       Tr_400       Va_10       Va_20        Va_5
#> Pl_0     0.83669981  0.929274743  0.75111228  0.98640631  0.84845461
#> Ce_200  -0.12318711 -0.032440391 -0.20850862  0.02670413 -0.11294666
#> Et_10    0.36074670  0.447945878  0.27806617  0.51233546  0.37068680
#> Et_30   -0.39638833 -0.302120790 -0.48066599 -0.24378099 -0.38404211
#> Et_60   -0.80837979 -0.717979799 -0.89470222 -0.65924194 -0.80020365
#> Et_90   -0.87738019 -0.788921139 -0.96091717 -0.73026156 -0.86727634
#> Lu_100  -0.08173937  0.009496508 -0.16796429  0.06511337 -0.07202578
#> Na_1000 -0.35914804 -0.268155459 -0.44467588 -0.21155204 -0.35267714
#> Na_1500 -0.29059413 -0.195612534 -0.37928440 -0.14058846 -0.27971273
#> Na_250   0.83370392  0.925566963  0.74793516  0.98448723  0.83669206
#> Na_750  -0.04143359  0.052563201 -0.12405536  0.11053463 -0.02483031
#> Ro_12   -0.10508936 -0.015756068 -0.18996765  0.03950858 -0.09838481
#> Ro_125  -1.52062543 -1.424813944 -1.60265025 -1.37084684 -1.50974110
#> Ro_25   -0.45961240 -0.369074705 -0.54665644 -0.31140162 -0.44840514
#> Tr_100   0.36035399  0.453253902  0.27149473  0.50567523  0.36818169
#> Tr_200   0.35160315  0.443688413  0.26851665  0.50272870  0.36208731
#> Tr_300           NA  0.093492865 -0.08408585  0.15096290  0.01074313
#> Tr_400  -0.09349286           NA -0.17758714  0.05665666 -0.08408023
#> Va_10    0.08408585  0.177587144          NA  0.23133167  0.09413802
#> Va_20   -0.15096290 -0.056656661 -0.23133167          NA -0.14034682
#> Va_5    -0.01074313  0.084080230 -0.09413802  0.14034682          NA
#> Ce_100   0.28961783  0.381469713  0.20730379  0.44065038  0.29821155
#> Ce_400  -0.05933164  0.036018024 -0.14504796  0.09506830 -0.04959564
#> Du_90    0.28333576  0.369364162  0.19457681  0.43118524  0.28752883
#> Et_5    -0.18835847 -0.091972241 -0.27174241 -0.03273060 -0.17604840
#> Lu_200   0.28861172  0.380582149  0.20477754  0.43851606  0.29935189
#> Lu_400   0.13014269  0.220541837  0.04578331  0.27971515  0.14364253
#> Lu_NA    0.03571013  0.129221682 -0.04459420  0.18651536  0.05119809
#> Ox_44   -0.24289678 -0.145567985 -0.32438859 -0.09361271 -0.22388013
#>                Ce_100      Ce_400       Du_90        Et_5        Lu_200
#> Pl_0     0.5471064134  0.89742467  0.55281188  1.02509831  0.5496186285
#> Ce_200  -0.4144963086 -0.06267434 -0.40389292  0.06400784 -0.4139827810
#> Et_10    0.0746315360  0.42261829  0.08135495  0.54475947  0.0705576897
#> Et_30   -0.6848394773 -0.33357910 -0.67430175 -0.21206723 -0.6854647680
#> Et_60   -1.1018184913 -0.74999365 -1.09407891 -0.62506850 -1.0972159134
#> Et_90   -1.1708284070 -0.81903089 -1.16451948 -0.69696300 -1.1706925791
#> Lu_100  -0.3720705230 -0.02480406 -0.36250349  0.09841258 -0.3720391532
#> Na_1000 -0.6494828362 -0.30103037 -0.64080736 -0.17241286 -0.6506793612
#> Na_1500 -0.5786148283 -0.23211700 -0.57007372 -0.10376843 -0.5766735945
#> Na_250   0.5417282154  0.89328121  0.53967624  1.02092122  0.5462927013
#> Na_750  -0.3273795521  0.02289000 -0.32018043  0.14931909 -0.3279678728
#> Ro_12   -0.3993151362 -0.04807935 -0.39382317  0.07746782 -0.3988329881
#> Ro_125  -1.8049612471 -1.45821667 -1.79775750 -1.33822079 -1.8072782968
#> Ro_25   -0.7527340771 -0.39923424 -0.74098845 -0.27547137 -0.7440903828
#> Tr_100   0.0595830269  0.41770561  0.07775230  0.54110704  0.0661173265
#> Tr_200   0.0606398601  0.41044953  0.07028587  0.53436141  0.0598637140
#> Tr_300  -0.2896178289  0.05933164 -0.28333576  0.18835847 -0.2886117239
#> Tr_400  -0.3814697131 -0.03601802 -0.36936416  0.09197224 -0.3805821487
#> Va_10   -0.2073037901  0.14504796 -0.19457681  0.27174241 -0.2047775402
#> Va_20   -0.4406503770 -0.09506830 -0.43118524  0.03273060 -0.4385160640
#> Va_5    -0.2982115464  0.04959564 -0.28752883  0.17604840 -0.2993518916
#> Ce_100             NA  0.34934662  0.01204673  0.47579115  0.0005361338
#> Ce_400  -0.3493466199          NA -0.34070631  0.12561124 -0.3468269829
#> Du_90   -0.0120467292  0.34070631          NA  0.46767401 -0.0116532607
#> Et_5    -0.4757911469 -0.12561124 -0.46767401          NA -0.4773959555
#> Lu_200  -0.0005361338  0.34682698  0.01165326  0.47739596            NA
#> Lu_400  -0.1609931616  0.18667968 -0.15447625  0.31806650 -0.1600469743
#> Lu_NA   -0.2539695132  0.09576022 -0.24641676  0.22634335 -0.2538215647
#> Ox_44   -0.5301091349 -0.18620085 -0.51619939 -0.05859579 -0.5342164816
#>              Lu_400       Lu_NA       Ox_44
#> Pl_0     0.70830936  0.80265039  1.07991591
#> Ce_200  -0.25195628 -0.15844761  0.11889661
#> Et_10    0.23573975  0.32719289  0.60325002
#> Et_30   -0.52457511 -0.43291457 -0.15346238
#> Et_60   -0.93798481 -0.84677715 -0.56631037
#> Et_90   -1.00953340 -0.91372396 -0.64125547
#> Lu_100  -0.21159889 -0.12209555  0.15787566
#> Na_1000 -0.48852777 -0.39563905 -0.11780511
#> Na_1500 -0.41938376 -0.32391405 -0.05204645
#> Na_250   0.70623430  0.79506957  1.06411909
#> Na_750  -0.16657322 -0.07347024  0.20233737
#> Ro_12   -0.23772193 -0.14730453  0.13258368
#> Ro_125  -1.64965233 -1.55786803 -1.27575098
#> Ro_25   -0.58685029 -0.50149382 -0.21797916
#> Tr_100   0.22637595  0.32289839  0.59995136
#> Tr_200   0.22179038  0.31130679  0.58958231
#> Tr_300  -0.13014269 -0.03571013  0.24289678
#> Tr_400  -0.22054184 -0.12922168  0.14556798
#> Va_10   -0.04578331  0.04459420  0.32438859
#> Va_20   -0.27971515 -0.18651536  0.09361271
#> Va_5    -0.14364253 -0.05119809  0.22388013
#> Ce_100   0.16099316  0.25396951  0.53010913
#> Ce_400  -0.18667968 -0.09576022  0.18620085
#> Du_90    0.15447625  0.24641676  0.51619939
#> Et_5    -0.31806650 -0.22634335  0.05859579
#> Lu_200   0.16004697  0.25382156  0.53421648
#> Lu_400           NA  0.09325759  0.37303765
#> Lu_NA   -0.09325759          NA  0.27232008
#> Ox_44   -0.37303765 -0.27232008          NA


# }