Calculates relative effects/mean differences at a particular time-point
get.relative.Rd
Uses mbnma time-course parameter estimates to calculate treatment differences between treatments or classes at a particular time-point. Can be used to compare treatments evaluated in studies at different follow-up times, or even to compare treatments in different MBNMA models via a common comparator.
Arguments
- mbnma
An S3 object of class
"mbnma"
generated by running a time-course MBNMA model- mbnma.add
An S3 object of
class("mbnma")
generated by running a time-course MBNMA model. This should only be specified if results from two different MBNMA models are to be combined to perform a 2-stage MBNMA (see Details).- time
A numeric value for the time at which to estimate relative effects/mean differences.
- treats
A character vector of treatment names for which to calculate relative effects/mean differences. Must be a subset of
mbnma$network$treatments
.- classes
A character vector of class names for which to calculate relative effects/mean differences. Must be a subset of
mbnma$network$classes
. Only works for class effect models.- lim
Specifies calculation of either 95% credible intervals (
lim="cred"
) or 95% prediction intervals (lim="pred"
).
Value
An object of class "relative.array"
list containing:
The time-point for which results are estimated
Matrices of posterior means, medians, SDs and upper and lower 95% credible intervals for the differences between each treatment
An array containing MCMC results for the differences between all treatments specified in
treats
or all classes specified inclasses
.
Results are reported in tables as the row-defined treatment minus the column-defined treatment.
Details
get.relative()
can also be used to perform a 2-stage MBNMA that allows synthesis of results
from two different MBNMA models via a single common comparator.
In an MBNMA model, all treatments must share the same time-course function. However, a 2-stage
approach can enable fitting of different time-course functions to different sets ("subnetworks") of
treatments. For example, some treatments may have rich time-course information,
allowing for a more complex time-course function to be used, whereas others may be sparse,
requiring a simpler time-course function.
Relative comparisons between treatments in the two datasets at specific follow-up times can then be estimated from MBNMA predicted effects versus a common comparator using the Bucher method and assuming consistency. See the MBNMAtime vignette for further details.
Examples
# \donttest{
# Create an mb.network object from a dataset
alognet <- mb.network(alog_pcfb)
#> Reference treatment is `placebo`
#> Studies reporting change from baseline automatically identified from the data
# Run a quadratic time-course MBNMA using the alogliptin dataset
mbnma <- mb.run(alognet,
fun=tpoly(degree=2,
pool.1="rel", method.1="random",
pool.2="rel", method.2="common"
)
)
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 233
#> Unobserved stochastic nodes: 71
#> Total graph size: 4375
#>
#> Initializing model
#>
# Calculate differences between all treatments at 20 weeks follow-up
allres <- get.relative(mbnma, time=20)
# Calculate difference between a subset of treatments at 10 weeks follow-up
subres <- get.relative(mbnma, time=10,
treats=c("alog_50", "alog_25", "placebo"))
###########################
##### 2-stage MBNMA #####
###########################
# Using the osteoarthritis dataset
# With placebo (Pl_0) as common comparator between subnetworks
#### Sparse model ####
# Treatments on which time-course data is limited
sparse.trt <- c("Ce_100", "Ce_400", "Du_90", "Lu_200", "Lu_400",
"Lu_NA", "Et_5", "Ox_44")
# Create a subnetwork of studies comparing these treatments
sparse.df <- osteopain %>% dplyr::group_by(studyID) %>%
dplyr::filter(any(treatment %in% sparse.trt)) %>%
dplyr::ungroup() %>%
subset(treatment %in% c("Pl_0", sparse.trt))
sparse.net <- mb.network(sparse.df)
#> Reference treatment is `Pl_0`
#> Studies reporting change from baseline automatically identified from the data
# Run a ITP MBNMA with a known rate
sparse.mbnma <- mb.run(sparse.net, fun=titp(method.rate=0.8, pool.rate="abs"))
#> 'rate' parameters must take positive values.
#> Default half-normal prior restricts posterior to positive values.
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 76
#> Unobserved stochastic nodes: 28
#> Total graph size: 1447
#>
#> Initializing model
#>
#### Complex model ####
# Treatments on which time-course data is rich
rich.trt <- levels(osteopain$treatment)[!levels(osteopain$treatment) %in%
c("Pl_0", "Ce_100", "Ce_400", "Du_90", "Lu_200",
"Lu_400", "Lu_NA", "Et_5", "Ox_44")]
# Create a subnetwork of studies comparing these treatments
rich.df <- osteopain %>% dplyr::group_by(studyID) %>%
dplyr::filter(any(treatment %in% rich.trt)) %>%
dplyr::ungroup() %>%
subset(treatment %in% c("Pl_0", rich.trt))
rich.net <- mb.network(rich.df)
#> Reference treatment is `Pl_0`
#> Studies reporting change from baseline automatically identified from the data
# Run a Emax MBNMA
rich.mbnma <- mb.run(rich.net, temax(p.expon = FALSE))
#> 'et50' parameters must take positive values.
#> Default half-normal prior restricts posterior to positive values.
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 363
#> Unobserved stochastic nodes: 121
#> Total graph size: 7221
#>
#> Initializing model
#>
#### Calculate relative effects between models ####
# At 10 weeks follow-up
rels.sparse <- get.relative(sparse.mbnma, time=10)
rels.rich <- get.relative(rich.mbnma, time=10)
rels.all <- get.relative(mbnma=rich.mbnma,
mbnma.add=sparse.mbnma, time=10)
print(rels.all$median)
#> Pl_0 Ce_200 Et_10 Et_30 Et_60
#> Pl_0 NA 0.96103461 0.4787077738 1.22821664 1.65238304
#> Ce_200 -0.961034609 NA -0.4856469514 0.26871815 0.69224079
#> Et_10 -0.478707774 0.48564695 NA 0.75366625 1.17201008
#> Et_30 -1.228216643 -0.26871815 -0.7536662512 NA 0.42188178
#> Et_60 -1.652383043 -0.69224079 -1.1720100841 -0.42188178 NA
#> Et_90 -1.728865224 -0.76896718 -1.2489730887 -0.49469318 -0.07415946
#> Lu_100 -0.918930675 0.04056182 -0.4391071842 0.31069220 0.73092671
#> Na_1000 -1.198118726 -0.23720961 -0.7173601881 0.03231904 0.45329833
#> Na_1500 -1.124594931 -0.16238080 -0.6429130349 0.10348977 0.52644337
#> Na_250 -0.006753349 0.95248989 0.4711502139 1.22220993 1.64120472
#> Na_750 -0.874043084 0.08597490 -0.3926811264 0.35459363 0.77521654
#> Ro_12 -0.944095355 0.01297419 -0.4668093742 0.28745657 0.70531622
#> Ro_125 -2.367597158 -1.40872129 -1.8922484293 -1.13483422 -0.71587707
#> Ro_25 -1.293198476 -0.33328318 -0.8115165344 -0.06321517 0.35762851
#> Tr_100 -0.474093934 0.48368456 0.0060812761 0.75649186 1.17393326
#> Tr_200 -0.480151024 0.48143975 0.0002301439 0.74842374 1.17021253
#> Tr_300 -0.838551367 0.12426541 -0.3555555801 0.39357270 0.81278235
#> Tr_400 -0.927857432 0.03127664 -0.4400428325 0.30167647 0.72426780
#> Va_10 -0.754420146 0.20747361 -0.2703618677 0.47818478 0.89821404
#> Va_20 -0.987110066 -0.02825168 -0.5065330838 0.24228177 0.66120937
#> Va_5 -0.843815624 0.11883824 -0.3634983589 0.38560680 0.80657641
#> Ce_100 -0.553353943 0.40498396 -0.0709626789 0.67967283 1.09789023
#> Ce_400 -0.904767724 0.05633500 -0.4240689290 0.33070009 0.74960799
#> Du_90 -0.553045575 0.41106117 -0.0659046497 0.68151734 1.10284851
#> Et_5 -1.028660625 -0.06951404 -0.5471234259 0.20362431 0.61995399
#> Lu_200 -0.545252568 0.41638080 -0.0677801612 0.68495098 1.10688678
#> Lu_400 -0.709315875 0.25130851 -0.2272174917 0.52303970 0.94588709
#> Lu_NA -0.795898852 0.16745827 -0.3137188459 0.43599656 0.85594264
#> Ox_44 -1.074993057 -0.11685397 -0.6011510347 0.15899566 0.57412251
#> Et_90 Lu_100 Na_1000 Na_1500 Na_250
#> Pl_0 1.72886522 0.918930675 1.19811873 1.12459493 0.006753349
#> Ce_200 0.76896718 -0.040561824 0.23720961 0.16238080 -0.952489889
#> Et_10 1.24897309 0.439107184 0.71736019 0.64291303 -0.471150214
#> Et_30 0.49469318 -0.310692199 -0.03231904 -0.10348977 -1.222209929
#> Et_60 0.07415946 -0.730926708 -0.45329833 -0.52644337 -1.641204717
#> Et_90 NA -0.806554348 -0.53181663 -0.60014842 -1.720970455
#> Lu_100 0.80655435 NA 0.27853508 0.20651608 -0.907105247
#> Na_1000 0.53181663 -0.278535084 NA -0.07250543 -1.187087241
#> Na_1500 0.60014842 -0.206516082 0.07250543 NA -1.114307386
#> Na_250 1.72097046 0.907105247 1.18708724 1.11430739 NA
#> Na_750 0.85605247 0.043800231 0.32286953 0.24828638 -0.868958054
#> Ro_12 0.77971146 -0.027172394 0.25056763 0.18088993 -0.932888322
#> Ro_125 -0.63826295 -1.451102785 -1.16956614 -1.24179308 -2.354017830
#> Ro_25 0.43173333 -0.375133123 -0.09335932 -0.16951779 -1.289460824
#> Tr_100 1.24964010 0.443914688 0.72014657 0.64809892 -0.468760144
#> Tr_200 1.24949595 0.442030150 0.71618094 0.64131857 -0.469052844
#> Tr_300 0.88878239 0.081171243 0.35990152 0.28644322 -0.830893938
#> Tr_400 0.79935306 -0.007738603 0.27030416 0.19513042 -0.920492036
#> Va_10 0.96661066 0.167161057 0.44681746 0.36877638 -0.745121819
#> Va_20 0.74153152 -0.069235031 0.21074905 0.13855282 -0.974153199
#> Va_5 0.88352930 0.077685490 0.35565086 0.28156233 -0.836516782
#> Ce_100 1.17173826 0.365904761 0.64660176 0.57134972 -0.539854990
#> Ce_400 0.82342205 0.018484809 0.29804223 0.22522565 -0.889730845
#> Du_90 1.17903938 0.369381957 0.64599140 0.57502588 -0.536488689
#> Et_5 0.69939513 -0.108347312 0.17028675 0.10028841 -1.016984585
#> Lu_200 1.18438179 0.376398195 0.65376853 0.57934066 -0.540932722
#> Lu_400 1.01792908 0.212983691 0.49185280 0.41999651 -0.702021088
#> Lu_NA 0.93435929 0.125341666 0.40375721 0.33152076 -0.782420737
#> Ox_44 0.65393213 -0.156135543 0.12459415 0.04962048 -1.064744103
#> Na_750 Ro_12 Ro_125 Ro_25 Tr_100
#> Pl_0 0.87404308 0.94409535 2.3675972 1.29319848 0.474093934
#> Ce_200 -0.08597490 -0.01297419 1.4087213 0.33328318 -0.483684564
#> Et_10 0.39268113 0.46680937 1.8922484 0.81151653 -0.006081276
#> Et_30 -0.35459363 -0.28745657 1.1348342 0.06321517 -0.756491860
#> Et_60 -0.77521654 -0.70531622 0.7158771 -0.35762851 -1.173933264
#> Et_90 -0.85605247 -0.77971146 0.6382630 -0.43173333 -1.249640096
#> Lu_100 -0.04380023 0.02717239 1.4511028 0.37513312 -0.443914688
#> Na_1000 -0.32286953 -0.25056763 1.1695661 0.09335932 -0.720146571
#> Na_1500 -0.24828638 -0.18088993 1.2417931 0.16951779 -0.648098920
#> Na_250 0.86895805 0.93288832 2.3540178 1.28946082 0.468760144
#> Na_750 NA 0.06949145 1.4908282 0.41594776 -0.396444390
#> Ro_12 -0.06949145 NA 1.4185970 0.34539773 -0.468789555
#> Ro_125 -1.49082818 -1.41859704 NA -1.07122352 -1.893964521
#> Ro_25 -0.41594776 -0.34539773 1.0712235 NA -0.817636802
#> Tr_100 0.39644439 0.46878956 1.8939645 0.81763680 NA
#> Tr_200 0.39270734 0.46618627 1.8852669 0.81386057 -0.004636722
#> Tr_300 0.03462791 0.10932570 1.5252405 0.45348354 -0.365181616
#> Tr_400 -0.05478530 0.02000783 1.4400226 0.36292074 -0.453963647
#> Va_10 0.12231068 0.19295203 1.6193414 0.54231400 -0.274733281
#> Va_20 -0.11205902 -0.04378595 1.3827800 0.30678364 -0.507579392
#> Va_5 0.03109391 0.10190337 1.5263759 0.45163653 -0.362402210
#> Ce_100 0.32475499 0.39490586 1.8148446 0.74314603 -0.074585797
#> Ce_400 -0.02517588 0.04606319 1.4651194 0.39314442 -0.425829099
#> Du_90 0.32403674 0.39614262 1.8207118 0.74945606 -0.074434940
#> Et_5 -0.15579367 -0.07904749 1.3426891 0.27101803 -0.548136557
#> Lu_200 0.33064688 0.39953096 1.8235486 0.74760510 -0.069257180
#> Lu_400 0.16739912 0.23932303 1.6578847 0.58887788 -0.230742322
#> Lu_NA 0.08299674 0.15319154 1.5769416 0.49714476 -0.317298050
#> Ox_44 -0.20174002 -0.13157444 1.2916954 0.21994702 -0.602325086
#> Tr_200 Tr_300 Tr_400 Va_10 Va_20
#> Pl_0 0.4801510237 0.838551367 0.927857432 0.75442015 0.98711007
#> Ce_200 -0.4814397549 -0.124265407 -0.031276637 -0.20747361 0.02825168
#> Et_10 -0.0002301439 0.355555580 0.440042833 0.27036187 0.50653308
#> Et_30 -0.7484237439 -0.393572697 -0.301676472 -0.47818478 -0.24228177
#> Et_60 -1.1702125338 -0.812782350 -0.724267797 -0.89821404 -0.66120937
#> Et_90 -1.2494959501 -0.888782390 -0.799353064 -0.96661066 -0.74153152
#> Lu_100 -0.4420301499 -0.081171243 0.007738603 -0.16716106 0.06923503
#> Na_1000 -0.7161809434 -0.359901515 -0.270304162 -0.44681746 -0.21074905
#> Na_1500 -0.6413185691 -0.286443216 -0.195130416 -0.36877638 -0.13855282
#> Na_250 0.4690528438 0.830893938 0.920492036 0.74512182 0.97415320
#> Na_750 -0.3927073369 -0.034627912 0.054785303 -0.12231068 0.11205902
#> Ro_12 -0.4661862749 -0.109325697 -0.020007829 -0.19295203 0.04378595
#> Ro_125 -1.8852669335 -1.525240509 -1.440022571 -1.61934140 -1.38277998
#> Ro_25 -0.8138605698 -0.453483536 -0.362920740 -0.54231400 -0.30678364
#> Tr_100 0.0046367224 0.365181616 0.453963647 0.27473328 0.50757939
#> Tr_200 NA 0.357084806 0.444435476 0.27511578 0.50301032
#> Tr_300 -0.3570848062 NA 0.088205480 -0.08356090 0.15072347
#> Tr_400 -0.4444354757 -0.088205480 NA -0.17226463 0.05988759
#> Va_10 -0.2751157788 0.083560901 0.172264631 NA 0.23594913
#> Va_20 -0.5030103246 -0.150723471 -0.059887592 -0.23594913 NA
#> Va_5 -0.3612223577 -0.004645471 0.084402140 -0.08464596 0.14534351
#> Ce_100 -0.0705358524 0.285177982 0.376909990 0.20075845 0.43204536
#> Ce_400 -0.4223245710 -0.062355702 0.026386112 -0.14840452 0.08581500
#> Du_90 -0.0676254006 0.291480827 0.379084362 0.20371918 0.43508570
#> Et_5 -0.5430334473 -0.190763027 -0.096947060 -0.27080281 -0.04085513
#> Lu_200 -0.0623748718 0.294113729 0.383484965 0.20995134 0.44271526
#> Lu_400 -0.2261935627 0.129341133 0.217381923 0.04569202 0.28070707
#> Lu_NA -0.3153875655 0.045525487 0.134389567 -0.03776895 0.19686019
#> Ox_44 -0.5938515461 -0.240485457 -0.147666893 -0.32435043 -0.08944222
#> Va_5 Ce_100 Ce_400 Du_90 Et_5
#> Pl_0 0.843815624 0.553353943 0.90476772 0.553045575 1.02866062
#> Ce_200 -0.118838236 -0.404983956 -0.05633500 -0.411061173 0.06951404
#> Et_10 0.363498359 0.070962679 0.42406893 0.065904650 0.54712343
#> Et_30 -0.385606802 -0.679672825 -0.33070009 -0.681517341 -0.20362431
#> Et_60 -0.806576407 -1.097890234 -0.74960799 -1.102848510 -0.61995399
#> Et_90 -0.883529295 -1.171738261 -0.82342205 -1.179039384 -0.69939513
#> Lu_100 -0.077685490 -0.365904761 -0.01848481 -0.369381957 0.10834731
#> Na_1000 -0.355650862 -0.646601757 -0.29804223 -0.645991397 -0.17028675
#> Na_1500 -0.281562333 -0.571349717 -0.22522565 -0.575025882 -0.10028841
#> Na_250 0.836516782 0.539854990 0.88973084 0.536488689 1.01698458
#> Na_750 -0.031093907 -0.324754995 0.02517588 -0.324036737 0.15579367
#> Ro_12 -0.101903372 -0.394905862 -0.04606319 -0.396142623 0.07904749
#> Ro_125 -1.526375921 -1.814844620 -1.46511935 -1.820711818 -1.34268908
#> Ro_25 -0.451636533 -0.743146028 -0.39314442 -0.749456055 -0.27101803
#> Tr_100 0.362402210 0.074585797 0.42582910 0.074434940 0.54813656
#> Tr_200 0.361222358 0.070535852 0.42232457 0.067625401 0.54303345
#> Tr_300 0.004645471 -0.285177982 0.06235570 -0.291480827 0.19076303
#> Tr_400 -0.084402140 -0.376909990 -0.02638611 -0.379084362 0.09694706
#> Va_10 0.084645962 -0.200758452 0.14840452 -0.203719179 0.27080281
#> Va_20 -0.145343515 -0.432045355 -0.08581500 -0.435085703 0.04085513
#> Va_5 NA -0.289066653 0.05650033 -0.288311152 0.18260908
#> Ce_100 0.289066653 NA 0.35145365 0.001325617 0.47150412
#> Ce_400 -0.056500330 -0.351453647 NA -0.350958841 0.12536905
#> Du_90 0.288311152 -0.001325617 0.35095884 NA 0.48034190
#> Et_5 -0.182609076 -0.471504124 -0.12536905 -0.480341899 NA
#> Lu_200 0.299094225 0.009064791 0.35915856 0.009330239 0.48337385
#> Lu_400 0.135210912 -0.153030670 0.19460255 -0.155008322 0.31810196
#> Lu_NA 0.050133610 -0.241180210 0.10697699 -0.247954849 0.23756277
#> Ox_44 -0.229724544 -0.523443890 -0.17017884 -0.531055906 -0.04995463
#> Lu_200 Lu_400 Lu_NA Ox_44
#> Pl_0 0.545252568 0.70931588 0.79589885 1.07499306
#> Ce_200 -0.416380803 -0.25130851 -0.16745827 0.11685397
#> Et_10 0.067780161 0.22721749 0.31371885 0.60115103
#> Et_30 -0.684950977 -0.52303970 -0.43599656 -0.15899566
#> Et_60 -1.106886776 -0.94588709 -0.85594264 -0.57412251
#> Et_90 -1.184381785 -1.01792908 -0.93435929 -0.65393213
#> Lu_100 -0.376398195 -0.21298369 -0.12534167 0.15613554
#> Na_1000 -0.653768531 -0.49185280 -0.40375721 -0.12459415
#> Na_1500 -0.579340658 -0.41999651 -0.33152076 -0.04962048
#> Na_250 0.540932722 0.70202109 0.78242074 1.06474410
#> Na_750 -0.330646884 -0.16739912 -0.08299674 0.20174002
#> Ro_12 -0.399530957 -0.23932303 -0.15319154 0.13157444
#> Ro_125 -1.823548636 -1.65788468 -1.57694163 -1.29169541
#> Ro_25 -0.747605100 -0.58887788 -0.49714476 -0.21994702
#> Tr_100 0.069257180 0.23074232 0.31729805 0.60232509
#> Tr_200 0.062374872 0.22619356 0.31538757 0.59385155
#> Tr_300 -0.294113729 -0.12934113 -0.04552549 0.24048546
#> Tr_400 -0.383484965 -0.21738192 -0.13438957 0.14766689
#> Va_10 -0.209951340 -0.04569202 0.03776895 0.32435043
#> Va_20 -0.442715262 -0.28070707 -0.19686019 0.08944222
#> Va_5 -0.299094225 -0.13521091 -0.05013361 0.22972454
#> Ce_100 -0.009064791 0.15303067 0.24118021 0.52344389
#> Ce_400 -0.359158561 -0.19460255 -0.10697699 0.17017884
#> Du_90 -0.009330239 0.15500832 0.24795485 0.53105591
#> Et_5 -0.483373848 -0.31810196 -0.23756277 0.04995463
#> Lu_200 NA 0.16294203 0.24955334 0.53358212
#> Lu_400 -0.162942028 NA 0.08338881 0.36837114
#> Lu_NA -0.249553339 -0.08338881 NA 0.28422431
#> Ox_44 -0.533582116 -0.36837114 -0.28422431 NA
# }