Calculates relative effects/mean differences at a particular time-point
get.relative.Rd
Uses mbnma time-course parameter estimates to calculate treatment differences between treatments or classes at a particular time-point. Can be used to compare treatments evaluated in studies at different follow-up times, or even to compare treatments in different MBNMA models via a common comparator.
Arguments
- mbnma
An S3 object of class
"mbnma"
generated by running a time-course MBNMA model- mbnma.add
An S3 object of
class("mbnma")
generated by running a time-course MBNMA model. This should only be specified if results from two different MBNMA models are to be combined to perform a 2-stage MBNMA (see Details).- time
A numeric value for the time at which to estimate relative effects/mean differences.
- treats
A character vector of treatment names for which to calculate relative effects/mean differences. Must be a subset of
mbnma$network$treatments
.- classes
A character vector of class names for which to calculate relative effects/mean differences. Must be a subset of
mbnma$network$classes
. Only works for class effect models.- lim
Specifies calculation of either 95% credible intervals (
lim="cred"
) or 95% prediction intervals (lim="pred"
).
Value
An object of class "relative.array"
list containing:
The time-point for which results are estimated
Matrices of posterior means, medians, SDs and upper and lower 95% credible intervals for the differences between each treatment
An array containing MCMC results for the differences between all treatments specified in
treats
or all classes specified inclasses
.
Results are reported in tables as the row-defined treatment minus the column-defined treatment.
Details
get.relative()
can also be used to perform a 2-stage MBNMA that allows synthesis of results
from two different MBNMA models via a single common comparator.
In an MBNMA model, all treatments must share the same time-course function. However, a 2-stage
approach can enable fitting of different time-course functions to different sets ("subnetworks") of
treatments. For example, some treatments may have rich time-course information,
allowing for a more complex time-course function to be used, whereas others may be sparse,
requiring a simpler time-course function.
Relative comparisons between treatments in the two datasets at specific follow-up times can then be estimated from MBNMA predicted effects versus a common comparator using the Bucher method and assuming consistency. See the MBNMAtime vignette for further details.
Examples
# \donttest{
# Create an mb.network object from a dataset
alognet <- mb.network(alog_pcfb)
#> Reference treatment is `placebo`
#> Studies reporting change from baseline automatically identified from the data
# Run a quadratic time-course MBNMA using the alogliptin dataset
mbnma <- mb.run(alognet,
fun=tpoly(degree=2,
pool.1="rel", method.1="random",
pool.2="rel", method.2="common"
)
)
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 233
#> Unobserved stochastic nodes: 71
#> Total graph size: 4375
#>
#> Initializing model
#>
# Calculate differences between all treatments at 20 weeks follow-up
allres <- get.relative(mbnma, time=20)
# Calculate difference between a subset of treatments at 10 weeks follow-up
subres <- get.relative(mbnma, time=10,
treats=c("alog_50", "alog_25", "placebo"))
###########################
##### 2-stage MBNMA #####
###########################
# Using the osteoarthritis dataset
# With placebo (Pl_0) as common comparator between subnetworks
#### Sparse model ####
# Treatments on which time-course data is limited
sparse.trt <- c("Ce_100", "Ce_400", "Du_90", "Lu_200", "Lu_400",
"Lu_NA", "Et_5", "Ox_44")
# Create a subnetwork of studies comparing these treatments
sparse.df <- osteopain %>% dplyr::group_by(studyID) %>%
dplyr::filter(any(treatment %in% sparse.trt)) %>%
dplyr::ungroup() %>%
subset(treatment %in% c("Pl_0", sparse.trt))
sparse.net <- mb.network(sparse.df)
#> Reference treatment is `Pl_0`
#> Studies reporting change from baseline automatically identified from the data
# Run a ITP MBNMA with a known rate
sparse.mbnma <- mb.run(sparse.net, fun=titp(method.rate=0.8, pool.rate="abs"))
#> 'rate' parameters must take positive values.
#> Default half-normal prior restricts posterior to positive values.
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 76
#> Unobserved stochastic nodes: 28
#> Total graph size: 1447
#>
#> Initializing model
#>
#### Complex model ####
# Treatments on which time-course data is rich
rich.trt <- levels(osteopain$treatment)[!levels(osteopain$treatment) %in%
c("Pl_0", "Ce_100", "Ce_400", "Du_90", "Lu_200",
"Lu_400", "Lu_NA", "Et_5", "Ox_44")]
# Create a subnetwork of studies comparing these treatments
rich.df <- osteopain %>% dplyr::group_by(studyID) %>%
dplyr::filter(any(treatment %in% rich.trt)) %>%
dplyr::ungroup() %>%
subset(treatment %in% c("Pl_0", rich.trt))
rich.net <- mb.network(rich.df)
#> Reference treatment is `Pl_0`
#> Studies reporting change from baseline automatically identified from the data
# Run a Emax MBNMA
rich.mbnma <- mb.run(rich.net, temax(p.expon = FALSE))
#> 'et50' parameters must take positive values.
#> Default half-normal prior restricts posterior to positive values.
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 363
#> Unobserved stochastic nodes: 121
#> Total graph size: 7221
#>
#> Initializing model
#>
#### Calculate relative effects between models ####
# At 10 weeks follow-up
rels.sparse <- get.relative(sparse.mbnma, time=10)
rels.rich <- get.relative(rich.mbnma, time=10)
rels.all <- get.relative(mbnma=rich.mbnma,
mbnma.add=sparse.mbnma, time=10)
print(rels.all$median)
#> Pl_0 Ce_200 Et_10 Et_30 Et_60
#> Pl_0 NA 0.96123029 0.471824255 1.23319633 1.64623732
#> Ce_200 -0.961230289 NA -0.488517123 0.26982558 0.68759516
#> Et_10 -0.471824255 0.48851712 NA 0.75588620 1.17312804
#> Et_30 -1.233196329 -0.26982558 -0.755886204 NA 0.41611695
#> Et_60 -1.646237321 -0.68759516 -1.173128043 -0.41611695 NA
#> Et_90 -1.716362353 -0.75476445 -1.241835478 -0.48212480 -0.06783837
#> Lu_100 -0.921570119 0.03860348 -0.443375024 0.31097449 0.72461454
#> Na_1000 -1.197453836 -0.23725884 -0.719664349 0.03474327 0.44923152
#> Na_1500 -1.126654188 -0.16746178 -0.654274437 0.10544342 0.52060234
#> Na_250 -0.003032188 0.95836525 0.469475442 1.22358117 1.64271052
#> Na_750 -0.874496903 0.08494509 -0.403621370 0.35594649 0.77189792
#> Ro_12 -0.943590417 0.01719680 -0.476880851 0.28704083 0.70226061
#> Ro_125 -2.353032604 -1.39801167 -1.882358979 -1.11874502 -0.70618140
#> Ro_25 -1.296648992 -0.33759680 -0.827353799 -0.06224436 0.35093433
#> Tr_100 -0.481067261 0.47910874 -0.005954795 0.74866247 1.16696930
#> Tr_200 -0.486750052 0.47275291 -0.011930021 0.74700398 1.16123830
#> Tr_300 -0.836699813 0.12318711 -0.360746697 0.39638833 0.80837979
#> Tr_400 -0.929274743 0.03244039 -0.447945878 0.30212079 0.71797980
#> Va_10 -0.751112284 0.20850862 -0.278066165 0.48066599 0.89470222
#> Va_20 -0.986406307 -0.02670413 -0.512335464 0.24378099 0.65924194
#> Va_5 -0.848454607 0.11294666 -0.370686801 0.38404211 0.80020365
#> Ce_100 -0.547106413 0.41449631 -0.074631536 0.68483948 1.10181849
#> Ce_400 -0.897424671 0.06267434 -0.422618293 0.33357910 0.74999365
#> Du_90 -0.552811878 0.40389292 -0.081354946 0.67430175 1.09407891
#> Et_5 -1.025098312 -0.06400784 -0.544759471 0.21206723 0.62506850
#> Lu_200 -0.549618629 0.41398278 -0.070557690 0.68546477 1.09721591
#> Lu_400 -0.708309357 0.25195628 -0.235739750 0.52457511 0.93798481
#> Lu_NA -0.802650389 0.15844761 -0.327192887 0.43291457 0.84677715
#> Ox_44 -1.079915915 -0.11889661 -0.603250023 0.15346238 0.56631037
#> Et_90 Lu_100 Na_1000 Na_1500 Na_250
#> Pl_0 1.71636235 0.921570119 1.19745384 1.12665419 0.003032188
#> Ce_200 0.75476445 -0.038603477 0.23725884 0.16746178 -0.958365253
#> Et_10 1.24183548 0.443375024 0.71966435 0.65427444 -0.469475442
#> Et_30 0.48212480 -0.310974494 -0.03474327 -0.10544342 -1.223581166
#> Et_60 0.06783837 -0.724614543 -0.44923152 -0.52060234 -1.642710521
#> Et_90 NA -0.797802086 -0.51402985 -0.58599228 -1.710025060
#> Lu_100 0.79780209 NA 0.27550715 0.20587285 -0.915216562
#> Na_1000 0.51402985 -0.275507148 NA -0.07114274 -1.194420135
#> Na_1500 0.58599228 -0.205872850 0.07114274 NA -1.122800276
#> Na_250 1.71002506 0.915216562 1.19442013 1.12280028 NA
#> Na_750 0.83716098 0.044133277 0.32463364 0.25342193 -0.868361852
#> Ro_12 0.76711491 -0.025583439 0.25103835 0.18327573 -0.944701044
#> Ro_125 -0.63823496 -1.432027415 -1.15981304 -1.22479209 -2.346802059
#> Ro_25 0.41736819 -0.379130973 -0.09951430 -0.16951357 -1.292917581
#> Tr_100 1.23523909 0.443738549 0.71869238 0.64781728 -0.477064565
#> Tr_200 1.23429743 0.434111821 0.70940069 0.64031888 -0.485990848
#> Tr_300 0.87738019 0.081739369 0.35914804 0.29059413 -0.833703924
#> Tr_400 0.78892114 -0.009496508 0.26815546 0.19561253 -0.925566963
#> Va_10 0.96091717 0.167964294 0.44467588 0.37928440 -0.747935162
#> Va_20 0.73026156 -0.065113366 0.21155204 0.14058846 -0.984487231
#> Va_5 0.86727634 0.072025782 0.35267714 0.27971273 -0.836692056
#> Ce_100 1.17082841 0.372070523 0.64948284 0.57861483 -0.541728215
#> Ce_400 0.81903089 0.024804064 0.30103037 0.23211700 -0.893281214
#> Du_90 1.16451948 0.362503490 0.64080736 0.57007372 -0.539676241
#> Et_5 0.69696300 -0.098412576 0.17241286 0.10376843 -1.020921221
#> Lu_200 1.17069258 0.372039153 0.65067936 0.57667359 -0.546292701
#> Lu_400 1.00953340 0.211598888 0.48852777 0.41938376 -0.706234304
#> Lu_NA 0.91372396 0.122095553 0.39563905 0.32391405 -0.795069568
#> Ox_44 0.64125547 -0.157875662 0.11780511 0.05204645 -1.064119094
#> Na_750 Ro_12 Ro_125 Ro_25 Tr_100 Tr_200
#> Pl_0 0.87449690 0.94359042 2.3530326 1.29664899 0.481067261 0.486750052
#> Ce_200 -0.08494509 -0.01719680 1.3980117 0.33759680 -0.479108738 -0.472752908
#> Et_10 0.40362137 0.47688085 1.8823590 0.82735380 0.005954795 0.011930021
#> Et_30 -0.35594649 -0.28704083 1.1187450 0.06224436 -0.748662468 -0.747003982
#> Et_60 -0.77189792 -0.70226061 0.7061814 -0.35093433 -1.166969298 -1.161238302
#> Et_90 -0.83716098 -0.76711491 0.6382350 -0.41736819 -1.235239093 -1.234297431
#> Lu_100 -0.04413328 0.02558344 1.4320274 0.37913097 -0.443738549 -0.434111821
#> Na_1000 -0.32463364 -0.25103835 1.1598130 0.09951430 -0.718692383 -0.709400693
#> Na_1500 -0.25342193 -0.18327573 1.2247921 0.16951357 -0.647817280 -0.640318884
#> Na_250 0.86836185 0.94470104 2.3468021 1.29291758 0.477064565 0.485990848
#> Na_750 NA 0.06770470 1.4763742 0.42260337 -0.393336137 -0.390585582
#> Ro_12 -0.06770470 NA 1.4114676 0.35043929 -0.461710201 -0.460541327
#> Ro_125 -1.47637425 -1.41146762 NA -1.05223263 -1.873857069 -1.869730802
#> Ro_25 -0.42260337 -0.35043929 1.0522326 NA -0.817448634 -0.807190978
#> Tr_100 0.39333614 0.46171020 1.8738571 0.81744863 NA 0.007315778
#> Tr_200 0.39058558 0.46054133 1.8697308 0.80719098 -0.007315778 NA
#> Tr_300 0.04143359 0.10508936 1.5206254 0.45961240 -0.360353987 -0.351603146
#> Tr_400 -0.05256320 0.01575607 1.4248139 0.36907471 -0.453253902 -0.443688413
#> Va_10 0.12405536 0.18996765 1.6026502 0.54665644 -0.271494727 -0.268516655
#> Va_20 -0.11053463 -0.03950858 1.3708468 0.31140162 -0.505675234 -0.502728699
#> Va_5 0.02483031 0.09838481 1.5097411 0.44840514 -0.368181687 -0.362087309
#> Ce_100 0.32737955 0.39931514 1.8049612 0.75273408 -0.059583027 -0.060639860
#> Ce_400 -0.02289000 0.04807935 1.4582167 0.39923424 -0.417705607 -0.410449526
#> Du_90 0.32018043 0.39382317 1.7977575 0.74098845 -0.077752305 -0.070285866
#> Et_5 -0.14931909 -0.07746782 1.3382208 0.27547137 -0.541107043 -0.534361407
#> Lu_200 0.32796787 0.39883299 1.8072783 0.74409038 -0.066117326 -0.059863714
#> Lu_400 0.16657322 0.23772193 1.6496523 0.58685029 -0.226375951 -0.221790385
#> Lu_NA 0.07347024 0.14730453 1.5578680 0.50149382 -0.322898387 -0.311306790
#> Ox_44 -0.20233737 -0.13258368 1.2757510 0.21797916 -0.599951357 -0.589582307
#> Tr_300 Tr_400 Va_10 Va_20 Va_5
#> Pl_0 0.83669981 0.929274743 0.75111228 0.98640631 0.84845461
#> Ce_200 -0.12318711 -0.032440391 -0.20850862 0.02670413 -0.11294666
#> Et_10 0.36074670 0.447945878 0.27806617 0.51233546 0.37068680
#> Et_30 -0.39638833 -0.302120790 -0.48066599 -0.24378099 -0.38404211
#> Et_60 -0.80837979 -0.717979799 -0.89470222 -0.65924194 -0.80020365
#> Et_90 -0.87738019 -0.788921139 -0.96091717 -0.73026156 -0.86727634
#> Lu_100 -0.08173937 0.009496508 -0.16796429 0.06511337 -0.07202578
#> Na_1000 -0.35914804 -0.268155459 -0.44467588 -0.21155204 -0.35267714
#> Na_1500 -0.29059413 -0.195612534 -0.37928440 -0.14058846 -0.27971273
#> Na_250 0.83370392 0.925566963 0.74793516 0.98448723 0.83669206
#> Na_750 -0.04143359 0.052563201 -0.12405536 0.11053463 -0.02483031
#> Ro_12 -0.10508936 -0.015756068 -0.18996765 0.03950858 -0.09838481
#> Ro_125 -1.52062543 -1.424813944 -1.60265025 -1.37084684 -1.50974110
#> Ro_25 -0.45961240 -0.369074705 -0.54665644 -0.31140162 -0.44840514
#> Tr_100 0.36035399 0.453253902 0.27149473 0.50567523 0.36818169
#> Tr_200 0.35160315 0.443688413 0.26851665 0.50272870 0.36208731
#> Tr_300 NA 0.093492865 -0.08408585 0.15096290 0.01074313
#> Tr_400 -0.09349286 NA -0.17758714 0.05665666 -0.08408023
#> Va_10 0.08408585 0.177587144 NA 0.23133167 0.09413802
#> Va_20 -0.15096290 -0.056656661 -0.23133167 NA -0.14034682
#> Va_5 -0.01074313 0.084080230 -0.09413802 0.14034682 NA
#> Ce_100 0.28961783 0.381469713 0.20730379 0.44065038 0.29821155
#> Ce_400 -0.05933164 0.036018024 -0.14504796 0.09506830 -0.04959564
#> Du_90 0.28333576 0.369364162 0.19457681 0.43118524 0.28752883
#> Et_5 -0.18835847 -0.091972241 -0.27174241 -0.03273060 -0.17604840
#> Lu_200 0.28861172 0.380582149 0.20477754 0.43851606 0.29935189
#> Lu_400 0.13014269 0.220541837 0.04578331 0.27971515 0.14364253
#> Lu_NA 0.03571013 0.129221682 -0.04459420 0.18651536 0.05119809
#> Ox_44 -0.24289678 -0.145567985 -0.32438859 -0.09361271 -0.22388013
#> Ce_100 Ce_400 Du_90 Et_5 Lu_200
#> Pl_0 0.5471064134 0.89742467 0.55281188 1.02509831 0.5496186285
#> Ce_200 -0.4144963086 -0.06267434 -0.40389292 0.06400784 -0.4139827810
#> Et_10 0.0746315360 0.42261829 0.08135495 0.54475947 0.0705576897
#> Et_30 -0.6848394773 -0.33357910 -0.67430175 -0.21206723 -0.6854647680
#> Et_60 -1.1018184913 -0.74999365 -1.09407891 -0.62506850 -1.0972159134
#> Et_90 -1.1708284070 -0.81903089 -1.16451948 -0.69696300 -1.1706925791
#> Lu_100 -0.3720705230 -0.02480406 -0.36250349 0.09841258 -0.3720391532
#> Na_1000 -0.6494828362 -0.30103037 -0.64080736 -0.17241286 -0.6506793612
#> Na_1500 -0.5786148283 -0.23211700 -0.57007372 -0.10376843 -0.5766735945
#> Na_250 0.5417282154 0.89328121 0.53967624 1.02092122 0.5462927013
#> Na_750 -0.3273795521 0.02289000 -0.32018043 0.14931909 -0.3279678728
#> Ro_12 -0.3993151362 -0.04807935 -0.39382317 0.07746782 -0.3988329881
#> Ro_125 -1.8049612471 -1.45821667 -1.79775750 -1.33822079 -1.8072782968
#> Ro_25 -0.7527340771 -0.39923424 -0.74098845 -0.27547137 -0.7440903828
#> Tr_100 0.0595830269 0.41770561 0.07775230 0.54110704 0.0661173265
#> Tr_200 0.0606398601 0.41044953 0.07028587 0.53436141 0.0598637140
#> Tr_300 -0.2896178289 0.05933164 -0.28333576 0.18835847 -0.2886117239
#> Tr_400 -0.3814697131 -0.03601802 -0.36936416 0.09197224 -0.3805821487
#> Va_10 -0.2073037901 0.14504796 -0.19457681 0.27174241 -0.2047775402
#> Va_20 -0.4406503770 -0.09506830 -0.43118524 0.03273060 -0.4385160640
#> Va_5 -0.2982115464 0.04959564 -0.28752883 0.17604840 -0.2993518916
#> Ce_100 NA 0.34934662 0.01204673 0.47579115 0.0005361338
#> Ce_400 -0.3493466199 NA -0.34070631 0.12561124 -0.3468269829
#> Du_90 -0.0120467292 0.34070631 NA 0.46767401 -0.0116532607
#> Et_5 -0.4757911469 -0.12561124 -0.46767401 NA -0.4773959555
#> Lu_200 -0.0005361338 0.34682698 0.01165326 0.47739596 NA
#> Lu_400 -0.1609931616 0.18667968 -0.15447625 0.31806650 -0.1600469743
#> Lu_NA -0.2539695132 0.09576022 -0.24641676 0.22634335 -0.2538215647
#> Ox_44 -0.5301091349 -0.18620085 -0.51619939 -0.05859579 -0.5342164816
#> Lu_400 Lu_NA Ox_44
#> Pl_0 0.70830936 0.80265039 1.07991591
#> Ce_200 -0.25195628 -0.15844761 0.11889661
#> Et_10 0.23573975 0.32719289 0.60325002
#> Et_30 -0.52457511 -0.43291457 -0.15346238
#> Et_60 -0.93798481 -0.84677715 -0.56631037
#> Et_90 -1.00953340 -0.91372396 -0.64125547
#> Lu_100 -0.21159889 -0.12209555 0.15787566
#> Na_1000 -0.48852777 -0.39563905 -0.11780511
#> Na_1500 -0.41938376 -0.32391405 -0.05204645
#> Na_250 0.70623430 0.79506957 1.06411909
#> Na_750 -0.16657322 -0.07347024 0.20233737
#> Ro_12 -0.23772193 -0.14730453 0.13258368
#> Ro_125 -1.64965233 -1.55786803 -1.27575098
#> Ro_25 -0.58685029 -0.50149382 -0.21797916
#> Tr_100 0.22637595 0.32289839 0.59995136
#> Tr_200 0.22179038 0.31130679 0.58958231
#> Tr_300 -0.13014269 -0.03571013 0.24289678
#> Tr_400 -0.22054184 -0.12922168 0.14556798
#> Va_10 -0.04578331 0.04459420 0.32438859
#> Va_20 -0.27971515 -0.18651536 0.09361271
#> Va_5 -0.14364253 -0.05119809 0.22388013
#> Ce_100 0.16099316 0.25396951 0.53010913
#> Ce_400 -0.18667968 -0.09576022 0.18620085
#> Du_90 0.15447625 0.24641676 0.51619939
#> Et_5 -0.31806650 -0.22634335 0.05859579
#> Lu_200 0.16004697 0.25382156 0.53421648
#> Lu_400 NA 0.09325759 0.37303765
#> Lu_NA -0.09325759 NA 0.27232008
#> Ox_44 -0.37303765 -0.27232008 NA
# }