Skip to contents

Generates spline basis matrices for fitting to time-course function

Usage

genspline(
  x,
  spline = "bs",
  knots = 1,
  degree = 1,
  max.time = max(x),
  boundaries = NULL
)

Arguments

x

A numeric vector indicating all time points available in the dataset

spline

Indicates the type of spline function. Can be either a piecewise linear spline ("ls"), natural cubic spline ("ns") or B-spline ("bs").

knots

The number/location of knots. If a single integer is given it indicates the number of knots (they will be equally spaced across the range of time-points). If a numeric vector is given it indicates the quantiles of the knots as a proportion of the maximum study follow-up in the dataset. For example, if the maximum follow-up time in the dataset is 10 months, knots=c(0.1,0.5) would indicate knots should be fitted at 1 and 5 months follow-up.

degree

a positive integer giving the degree of the polynomial from which the spline function is composed (e.g. degree=3 represents a cubic spline).

max.time

A number indicating the maximum time between which to calculate the spline function.

boundaries

A positive numeric vector of length 2 that represents the time-points at which to anchor the B-spline or natural cubic spline basis matrix. This allows data to extend beyond the boundary knots, or for the basis parameters to not depend on x. The default (boundaries=NULL)is the range of x.

Value

A spline basis matrix with number of rows equal to length(x) and the number of columns equal to the number of coefficients in the spline.

Examples

x <- 0:100

genspline(x)
#>        1    2
#> 0   0.00 0.00
#> 1   0.02 0.00
#> 2   0.04 0.00
#> 3   0.06 0.00
#> 4   0.08 0.00
#> 5   0.10 0.00
#> 6   0.12 0.00
#> 7   0.14 0.00
#> 8   0.16 0.00
#> 9   0.18 0.00
#> 10  0.20 0.00
#> 11  0.22 0.00
#> 12  0.24 0.00
#> 13  0.26 0.00
#> 14  0.28 0.00
#> 15  0.30 0.00
#> 16  0.32 0.00
#> 17  0.34 0.00
#> 18  0.36 0.00
#> 19  0.38 0.00
#> 20  0.40 0.00
#> 21  0.42 0.00
#> 22  0.44 0.00
#> 23  0.46 0.00
#> 24  0.48 0.00
#> 25  0.50 0.00
#> 26  0.52 0.00
#> 27  0.54 0.00
#> 28  0.56 0.00
#> 29  0.58 0.00
#> 30  0.60 0.00
#> 31  0.62 0.00
#> 32  0.64 0.00
#> 33  0.66 0.00
#> 34  0.68 0.00
#> 35  0.70 0.00
#> 36  0.72 0.00
#> 37  0.74 0.00
#> 38  0.76 0.00
#> 39  0.78 0.00
#> 40  0.80 0.00
#> 41  0.82 0.00
#> 42  0.84 0.00
#> 43  0.86 0.00
#> 44  0.88 0.00
#> 45  0.90 0.00
#> 46  0.92 0.00
#> 47  0.94 0.00
#> 48  0.96 0.00
#> 49  0.98 0.00
#> 50  1.00 0.00
#> 51  0.98 0.02
#> 52  0.96 0.04
#> 53  0.94 0.06
#> 54  0.92 0.08
#> 55  0.90 0.10
#> 56  0.88 0.12
#> 57  0.86 0.14
#> 58  0.84 0.16
#> 59  0.82 0.18
#> 60  0.80 0.20
#> 61  0.78 0.22
#> 62  0.76 0.24
#> 63  0.74 0.26
#> 64  0.72 0.28
#> 65  0.70 0.30
#> 66  0.68 0.32
#> 67  0.66 0.34
#> 68  0.64 0.36
#> 69  0.62 0.38
#> 70  0.60 0.40
#> 71  0.58 0.42
#> 72  0.56 0.44
#> 73  0.54 0.46
#> 74  0.52 0.48
#> 75  0.50 0.50
#> 76  0.48 0.52
#> 77  0.46 0.54
#> 78  0.44 0.56
#> 79  0.42 0.58
#> 80  0.40 0.60
#> 81  0.38 0.62
#> 82  0.36 0.64
#> 83  0.34 0.66
#> 84  0.32 0.68
#> 85  0.30 0.70
#> 86  0.28 0.72
#> 87  0.26 0.74
#> 88  0.24 0.76
#> 89  0.22 0.78
#> 90  0.20 0.80
#> 91  0.18 0.82
#> 92  0.16 0.84
#> 93  0.14 0.86
#> 94  0.12 0.88
#> 95  0.10 0.90
#> 96  0.08 0.92
#> 97  0.06 0.94
#> 98  0.04 0.96
#> 99  0.02 0.98
#> 100 0.00 1.00

# Generate a quadratic B-spline with 1 equally spaced internal knot
genspline(x, spline="bs", knots=2, degree=2)
#>           1       2       3      4
#> 0   0.00000 0.00000 0.00000 0.0000
#> 1   0.05865 0.00045 0.00000 0.0000
#> 2   0.11460 0.00180 0.00000 0.0000
#> 3   0.16785 0.00405 0.00000 0.0000
#> 4   0.21840 0.00720 0.00000 0.0000
#> 5   0.26625 0.01125 0.00000 0.0000
#> 6   0.31140 0.01620 0.00000 0.0000
#> 7   0.35385 0.02205 0.00000 0.0000
#> 8   0.39360 0.02880 0.00000 0.0000
#> 9   0.43065 0.03645 0.00000 0.0000
#> 10  0.46500 0.04500 0.00000 0.0000
#> 11  0.49665 0.05445 0.00000 0.0000
#> 12  0.52560 0.06480 0.00000 0.0000
#> 13  0.55185 0.07605 0.00000 0.0000
#> 14  0.57540 0.08820 0.00000 0.0000
#> 15  0.59625 0.10125 0.00000 0.0000
#> 16  0.61440 0.11520 0.00000 0.0000
#> 17  0.62985 0.13005 0.00000 0.0000
#> 18  0.64260 0.14580 0.00000 0.0000
#> 19  0.65265 0.16245 0.00000 0.0000
#> 20  0.66000 0.18000 0.00000 0.0000
#> 21  0.66465 0.19845 0.00000 0.0000
#> 22  0.66660 0.21780 0.00000 0.0000
#> 23  0.66585 0.23805 0.00000 0.0000
#> 24  0.66240 0.25920 0.00000 0.0000
#> 25  0.65625 0.28125 0.00000 0.0000
#> 26  0.64740 0.30420 0.00000 0.0000
#> 27  0.63585 0.32805 0.00000 0.0000
#> 28  0.62160 0.35280 0.00000 0.0000
#> 29  0.60465 0.37845 0.00000 0.0000
#> 30  0.58500 0.40500 0.00000 0.0000
#> 31  0.56265 0.43245 0.00000 0.0000
#> 32  0.53760 0.46080 0.00000 0.0000
#> 33  0.50985 0.49005 0.00000 0.0000
#> 34  0.48020 0.51960 0.00020 0.0000
#> 35  0.45125 0.54750 0.00125 0.0000
#> 36  0.42320 0.57360 0.00320 0.0000
#> 37  0.39605 0.59790 0.00605 0.0000
#> 38  0.36980 0.62040 0.00980 0.0000
#> 39  0.34445 0.64110 0.01445 0.0000
#> 40  0.32000 0.66000 0.02000 0.0000
#> 41  0.29645 0.67710 0.02645 0.0000
#> 42  0.27380 0.69240 0.03380 0.0000
#> 43  0.25205 0.70590 0.04205 0.0000
#> 44  0.23120 0.71760 0.05120 0.0000
#> 45  0.21125 0.72750 0.06125 0.0000
#> 46  0.19220 0.73560 0.07220 0.0000
#> 47  0.17405 0.74190 0.08405 0.0000
#> 48  0.15680 0.74640 0.09680 0.0000
#> 49  0.14045 0.74910 0.11045 0.0000
#> 50  0.12500 0.75000 0.12500 0.0000
#> 51  0.11045 0.74910 0.14045 0.0000
#> 52  0.09680 0.74640 0.15680 0.0000
#> 53  0.08405 0.74190 0.17405 0.0000
#> 54  0.07220 0.73560 0.19220 0.0000
#> 55  0.06125 0.72750 0.21125 0.0000
#> 56  0.05120 0.71760 0.23120 0.0000
#> 57  0.04205 0.70590 0.25205 0.0000
#> 58  0.03380 0.69240 0.27380 0.0000
#> 59  0.02645 0.67710 0.29645 0.0000
#> 60  0.02000 0.66000 0.32000 0.0000
#> 61  0.01445 0.64110 0.34445 0.0000
#> 62  0.00980 0.62040 0.36980 0.0000
#> 63  0.00605 0.59790 0.39605 0.0000
#> 64  0.00320 0.57360 0.42320 0.0000
#> 65  0.00125 0.54750 0.45125 0.0000
#> 66  0.00020 0.51960 0.48020 0.0000
#> 67  0.00000 0.49005 0.50985 0.0001
#> 68  0.00000 0.46080 0.53760 0.0016
#> 69  0.00000 0.43245 0.56265 0.0049
#> 70  0.00000 0.40500 0.58500 0.0100
#> 71  0.00000 0.37845 0.60465 0.0169
#> 72  0.00000 0.35280 0.62160 0.0256
#> 73  0.00000 0.32805 0.63585 0.0361
#> 74  0.00000 0.30420 0.64740 0.0484
#> 75  0.00000 0.28125 0.65625 0.0625
#> 76  0.00000 0.25920 0.66240 0.0784
#> 77  0.00000 0.23805 0.66585 0.0961
#> 78  0.00000 0.21780 0.66660 0.1156
#> 79  0.00000 0.19845 0.66465 0.1369
#> 80  0.00000 0.18000 0.66000 0.1600
#> 81  0.00000 0.16245 0.65265 0.1849
#> 82  0.00000 0.14580 0.64260 0.2116
#> 83  0.00000 0.13005 0.62985 0.2401
#> 84  0.00000 0.11520 0.61440 0.2704
#> 85  0.00000 0.10125 0.59625 0.3025
#> 86  0.00000 0.08820 0.57540 0.3364
#> 87  0.00000 0.07605 0.55185 0.3721
#> 88  0.00000 0.06480 0.52560 0.4096
#> 89  0.00000 0.05445 0.49665 0.4489
#> 90  0.00000 0.04500 0.46500 0.4900
#> 91  0.00000 0.03645 0.43065 0.5329
#> 92  0.00000 0.02880 0.39360 0.5776
#> 93  0.00000 0.02205 0.35385 0.6241
#> 94  0.00000 0.01620 0.31140 0.6724
#> 95  0.00000 0.01125 0.26625 0.7225
#> 96  0.00000 0.00720 0.21840 0.7744
#> 97  0.00000 0.00405 0.16785 0.8281
#> 98  0.00000 0.00180 0.11460 0.8836
#> 99  0.00000 0.00045 0.05865 0.9409
#> 100 0.00000 0.00000 0.00000 1.0000

# Generate a natural spline with 2 knots at selected quantiles
genspline(x, spline="ns", knots=c(0.1, 0.5))
#>                1          2           3
#> 0    0.000000000 0.00000000  0.00000000
#> 1   -0.014156667 0.03969467 -0.02551800
#> 2   -0.028112452 0.07916287 -0.05089041
#> 3   -0.041666470 0.11817812 -0.07597165
#> 4   -0.054617838 0.15651395 -0.10061611
#> 5   -0.066765674 0.19394389 -0.12467821
#> 6   -0.077909094 0.23024146 -0.14801237
#> 7   -0.087847215 0.26518020 -0.17047299
#> 8   -0.096379153 0.29853363 -0.19191448
#> 9   -0.103304027 0.33007527 -0.21219125
#> 10  -0.108420951 0.35957866 -0.23115771
#> 11  -0.111576347 0.38686644 -0.24869787
#> 12  -0.112805841 0.41195769 -0.26481407
#> 13  -0.112192366 0.43492063 -0.27953826
#> 14  -0.109818852 0.45582345 -0.29290238
#> 15  -0.105768230 0.47473438 -0.30493837
#> 16  -0.100123432 0.49172161 -0.31567818
#> 17  -0.092967387 0.50685335 -0.32515374
#> 18  -0.084383028 0.52019781 -0.33339701
#> 19  -0.074453285 0.53182320 -0.34043991
#> 20  -0.063261088 0.54179771 -0.34631440
#> 21  -0.050889370 0.55018957 -0.35105242
#> 22  -0.037421061 0.55706697 -0.35468591
#> 23  -0.022939091 0.56249812 -0.35724681
#> 24  -0.007526393 0.56655123 -0.35876706
#> 25   0.008734103 0.56929451 -0.35927861
#> 26   0.025759467 0.57079616 -0.35881340
#> 27   0.043466767 0.57112439 -0.35740338
#> 28   0.061773071 0.57034740 -0.35508047
#> 29   0.080595450 0.56853341 -0.35187663
#> 30   0.099850972 0.56575061 -0.34782381
#> 31   0.119456707 0.56206722 -0.34295393
#> 32   0.139329723 0.55755144 -0.33729894
#> 33   0.159387088 0.55227149 -0.33089080
#> 34   0.179545874 0.54629555 -0.32376143
#> 35   0.199723147 0.53969185 -0.31594278
#> 36   0.219835978 0.53252859 -0.30746679
#> 37   0.239801435 0.52487398 -0.29836542
#> 38   0.259536588 0.51679622 -0.28867059
#> 39   0.278958505 0.50836352 -0.27841425
#> 40   0.297984256 0.49964408 -0.26762834
#> 41   0.316530909 0.49070612 -0.25634481
#> 42   0.334515533 0.48161784 -0.24459560
#> 43   0.351855199 0.47244744 -0.23241264
#> 44   0.368466973 0.46326314 -0.21982789
#> 45   0.384267926 0.45413314 -0.20687329
#> 46   0.399175127 0.44512564 -0.19358077
#> 47   0.413105645 0.43630886 -0.17998228
#> 48   0.425976548 0.42775100 -0.16610977
#> 49   0.437704905 0.41952026 -0.15199517
#> 50   0.448207787 0.41168486 -0.13767043
#> 51   0.457420444 0.40430009 -0.12316276
#> 52   0.465350863 0.39736958 -0.10848045
#> 53   0.472025210 0.39088408 -0.09362707
#> 54   0.477469654 0.38483430 -0.07860618
#> 55   0.481710364 0.37921098 -0.06342134
#> 56   0.484773507 0.37400485 -0.04807613
#> 57   0.486685252 0.36920663 -0.03257410
#> 58   0.487471767 0.36480705 -0.01691882
#> 59   0.487159219 0.36079685 -0.00111385
#> 60   0.485773778 0.35716676  0.01483724
#> 61   0.483341610 0.35390749  0.03093090
#> 62   0.479888885 0.35100979  0.04716355
#> 63   0.475441771 0.34846438  0.06353163
#> 64   0.470026435 0.34626198  0.08003158
#> 65   0.463669046 0.34439334  0.09665984
#> 66   0.456395772 0.34284917  0.11341283
#> 67   0.448232780 0.34162021  0.13028700
#> 68   0.439206240 0.34069719  0.14727879
#> 69   0.429342320 0.34007084  0.16438462
#> 70   0.418667187 0.33973188  0.18160094
#> 71   0.407207009 0.33967104  0.19892417
#> 72   0.394987955 0.33987906  0.21635076
#> 73   0.382036194 0.34034666  0.23387715
#> 74   0.368377892 0.34106457  0.25149976
#> 75   0.354039218 0.34202352  0.26921504
#> 76   0.339046341 0.34321424  0.28701941
#> 77   0.323425429 0.34462747  0.30490933
#> 78   0.307202649 0.34625392  0.32288121
#> 79   0.290404170 0.34808433  0.34093151
#> 80   0.273056159 0.35010942  0.35905664
#> 81   0.255184786 0.35231993  0.37725306
#> 82   0.236816218 0.35470659  0.39551719
#> 83   0.217976624 0.35726012  0.41384548
#> 84   0.198692171 0.35997126  0.43223435
#> 85   0.178989027 0.36283072  0.45068025
#> 86   0.158893362 0.36582925  0.46917961
#> 87   0.138431342 0.36895757  0.48772886
#> 88   0.117629137 0.37220642  0.50632445
#> 89   0.096512914 0.37556651  0.52496280
#> 90   0.075108841 0.37902858  0.54364036
#> 91   0.053443087 0.38258336  0.56235356
#> 92   0.031541819 0.38622157  0.58109883
#> 93   0.009431207 0.38993395  0.59987262
#> 94  -0.012862583 0.39371123  0.61867135
#> 95  -0.035313382 0.39754414  0.63749147
#> 96  -0.057895021 0.40142339  0.65632941
#> 97  -0.080581333 0.40533973  0.67518160
#> 98  -0.103346149 0.40928388  0.69404449
#> 99  -0.126163302 0.41324658  0.71291450
#> 100 -0.149006623 0.41721854  0.73178808

# Generate a piecewise linear spline with 3 equally spaced knots
genspline(x, spline="ls", knots=3)
#>      1  2  3  4
#> 0    0  0  0  0
#> 1    1  0  0  0
#> 2    2  0  0  0
#> 3    3  0  0  0
#> 4    4  0  0  0
#> 5    5  0  0  0
#> 6    6  0  0  0
#> 7    7  0  0  0
#> 8    8  0  0  0
#> 9    9  0  0  0
#> 10  10  0  0  0
#> 11  11  0  0  0
#> 12  12  0  0  0
#> 13  13  0  0  0
#> 14  14  0  0  0
#> 15  15  0  0  0
#> 16  16  0  0  0
#> 17  17  0  0  0
#> 18  18  0  0  0
#> 19  19  0  0  0
#> 20  20  0  0  0
#> 21  21  0  0  0
#> 22  22  0  0  0
#> 23  23  0  0  0
#> 24  24  0  0  0
#> 25  25  0  0  0
#> 26  25  1  0  0
#> 27  25  2  0  0
#> 28  25  3  0  0
#> 29  25  4  0  0
#> 30  25  5  0  0
#> 31  25  6  0  0
#> 32  25  7  0  0
#> 33  25  8  0  0
#> 34  25  9  0  0
#> 35  25 10  0  0
#> 36  25 11  0  0
#> 37  25 12  0  0
#> 38  25 13  0  0
#> 39  25 14  0  0
#> 40  25 15  0  0
#> 41  25 16  0  0
#> 42  25 17  0  0
#> 43  25 18  0  0
#> 44  25 19  0  0
#> 45  25 20  0  0
#> 46  25 21  0  0
#> 47  25 22  0  0
#> 48  25 23  0  0
#> 49  25 24  0  0
#> 50  25 25  0  0
#> 51  25 25  1  0
#> 52  25 25  2  0
#> 53  25 25  3  0
#> 54  25 25  4  0
#> 55  25 25  5  0
#> 56  25 25  6  0
#> 57  25 25  7  0
#> 58  25 25  8  0
#> 59  25 25  9  0
#> 60  25 25 10  0
#> 61  25 25 11  0
#> 62  25 25 12  0
#> 63  25 25 13  0
#> 64  25 25 14  0
#> 65  25 25 15  0
#> 66  25 25 16  0
#> 67  25 25 17  0
#> 68  25 25 18  0
#> 69  25 25 19  0
#> 70  25 25 20  0
#> 71  25 25 21  0
#> 72  25 25 22  0
#> 73  25 25 23  0
#> 74  25 25 24  0
#> 75  25 25 25  0
#> 76  25 25 25  1
#> 77  25 25 25  2
#> 78  25 25 25  3
#> 79  25 25 25  4
#> 80  25 25 25  5
#> 81  25 25 25  6
#> 82  25 25 25  7
#> 83  25 25 25  8
#> 84  25 25 25  9
#> 85  25 25 25 10
#> 86  25 25 25 11
#> 87  25 25 25 12
#> 88  25 25 25 13
#> 89  25 25 25 14
#> 90  25 25 25 15
#> 91  25 25 25 16
#> 92  25 25 25 17
#> 93  25 25 25 18
#> 94  25 25 25 19
#> 95  25 25 25 20
#> 96  25 25 25 21
#> 97  25 25 25 22
#> 98  25 25 25 23
#> 99  25 25 25 24
#> 100 25 25 25 25