fitplot.Rd
Plot fitted values from MBNMA model
fitplot(
mbnma,
disp.obs = TRUE,
n.iter = mbnma$BUGSoutput$n.iter,
n.thin = mbnma$BUGSoutput$n.thin,
...
)
An S3 object of class "mbnma"
generated by running
a dose-response MBNMA model
A boolean object to indicate whether raw data responses should be plotted as points on the graph
number of total iterations per chain (including burn in; default: 2000)
thinning rate. Must be a positive integer. Set
n.thin
> 1 to save memory and computation time if
n.iter
is large. Default is max(1, floor(n.chains *
(n.iter-n.burnin) / 1000))
which will only thin if there are at
least 2000 simulations.
Arguments to be sent to ggplot2::geom_point()
or ggplot2::geom_line()
Generates a plot of fitted values from the MBNMA model and returns a list containing
the plot (as an object of class(c("gg", "ggplot"))
), and a data.frame of posterior mean
fitted values for each observation.
Fitted values should only be plotted for models that have converged successfully.
If fitted values (theta
) have not been monitored in mbnma$parameters.to.save
then additional iterations will have to be run to get results for these.
# \donttest{
# Using the triptans data
network <- mbnma.network(triptans)
#> Values for `agent` with dose = 0 have been recoded to `Placebo`
#> agent is being recoded to enforce sequential numbering
# Run an Emax dose-response MBNMA and predict responses
emax <- mbnma.run(network, fun=demax(), method="random")
#> `likelihood` not given by user - set to `binomial` based on data provided
#> `link` not given by user - set to `logit` based on assigned value for `likelihood`
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 182
#> Unobserved stochastic nodes: 197
#> Total graph size: 4115
#>
#> Initializing model
#>
# Plot fitted values and observed values
fitplot(emax)
#> `theta` not monitored in mbnma$parameters.to.save.
#> additional iterations will be run in order to obtain results
# Plot fitted values only
fitplot(emax, disp.obs=FALSE)
#> `theta` not monitored in mbnma$parameters.to.save.
#> additional iterations will be run in order to obtain results
# A data frame of fitted values can be obtained from the object
#returned by `fitplot`
fits <- fitplot(emax)
#> `theta` not monitored in mbnma$parameters.to.save.
#> additional iterations will be run in order to obtain results
head(fits$fv)
#> study arm mean facet fupdose groupvar studyID y
#> 711 1 2 -2.0657641 sumatriptan 0.0 1 27 NA
#> 71 1 2 -0.8904337 sumatriptan 0.5 1 27 -0.7845814
#> 141 1 3 -0.8547510 sumatriptan 1.0 1 37 -0.9614112
#> 211 1 4 -0.5605191 sumatriptan 2.0 1 66 -0.7429087
#> 721 2 2 -2.0657641 eletriptan 0.0 2 27 NA
#> 72 2 2 -0.7440639 eletriptan 1.0 2 27 -0.7522361
# }