dpoly.Rd
Polynomial dose-response function
dpoly(
degree = 1,
beta.1 = "rel",
beta.2 = "rel",
beta.3 = "rel",
beta.4 = "rel"
)
The degree of the polynomial - e.g. degree=1
for linear, degree=2
for quadratic, degree=3
for cubic.
Pooling for the 1st polynomial coefficient. Can take "rel"
, "common"
, "random"
or be
assigned a numeric value (see details).
Pooling for the 2nd polynomial coefficient. Can take "rel"
, "common"
, "random"
or be
assigned a numeric value (see details).
Pooling for the 3rd polynomial coefficient. Can take "rel"
, "common"
, "random"
or be
assigned a numeric value (see details).
Pooling for the 4th polynomial coefficient. Can take "rel"
, "common"
, "random"
or be
assigned a numeric value (see details).
An object of class("dosefun")
\(\beta_1\) represents the 1st coefficient.
\(\beta_2\) represents the 2nd coefficient.
\(\beta_3\) represents the 3rd coefficient.
\(\beta_4\) represents the 4th coefficient.
Linear model: $$\beta_1{x}$$
Quadratic model: $$\beta_1{x} + \beta_2{x^2}$$
Cubic model: $$\beta_1{x} + \beta_2{x^2} + \beta_3{x^3}$$
Quartic model: $$\beta_1{x} + \beta_2{x^2} + \beta_3{x^3} + \beta_4{x^4}$$
Argument | Model specification |
"rel" | Implies that relative effects should be pooled for this dose-response parameter separately for each agent in the network. |
"common" | Implies that all agents share the same common effect for this dose-response parameter. |
"random" | Implies that all agents share a similar (exchangeable) effect for this dose-response parameter. This approach allows for modelling of variability between agents. |
numeric() | Assigned a numeric value, indicating that this dose-response parameter should not be estimated from the data but should be assigned the numeric value determined by the user. This can be useful for fixing specific dose-response parameters (e.g. Hill parameters in Emax functions) to a single value. |
When relative effects are modelled on more than one dose-response parameter,
correlation between them is automatically estimated using a vague inverse-Wishart prior.
This prior can be made slightly more informative by specifying the scale matrix omega
and by changing the degrees of freedom of the inverse-Wishart prior
using the priors
argument in mbnma.run()
.
There are no references for Rd macro \insertAllCites
on this help page.
# Linear model with random effects
dpoly(beta.1="rel")
#> $name
#> [1] "poly"
#>
#> $fun
#> ~beta.1 * dose
#> <environment: 0x55e26dea1590>
#>
#> $params
#> [1] "beta.1"
#>
#> $nparam
#> [1] 1
#>
#> $jags
#> [1] "s.beta.1[agent[i,k]] * dose[i,k]"
#>
#> $apool
#> beta.1
#> "rel"
#>
#> $bname
#> beta.1
#> "beta.1"
#>
#> attr(,"class")
#> [1] "dosefun"
# Quadratic model dose-response function
# with an exchangeable (random) absolute parameter estimated for the 2nd coefficient
dpoly(beta.1="rel", beta.2="random")
#> $name
#> [1] "poly"
#>
#> $fun
#> ~beta.1 * dose
#> <environment: 0x55e26afc5378>
#>
#> $params
#> [1] "beta.1"
#>
#> $nparam
#> [1] 1
#>
#> $jags
#> [1] "s.beta.1[agent[i,k]] * dose[i,k]"
#>
#> $apool
#> beta.1
#> "rel"
#>
#> $bname
#> beta.1
#> "beta.1"
#>
#> attr(,"class")
#> [1] "dosefun"